Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications

Author(s):  
Mohammad Shojib Hossain ◽  
David Espalin ◽  
Jorge Ramos ◽  
Mireya Perez ◽  
Ryan Wicker

Today, the use of material extrusion processes, like fused deposition modeling (FDM), in aerospace, biomedical science, and other industries, is gaining popularity because of the access to production-grade thermoplastic polymer materials. This paper focuses on how modifying process parameters such as build orientation, raster angle (RA), contour width (CW), raster width (RW), and raster-to-raster air gap (RRAG) can improve ultimate tensile strength (UTS), Young's modulus, and tensile strain. This was assessed using three methods: default, Insight revision, and visual feedback. On average, parameter modification through the visual feedback method improved UTS in all orientations, 16% in XYZ, 7% in XZY, and 22% in ZXY.

2014 ◽  
Vol 592-594 ◽  
pp. 400-404 ◽  
Author(s):  
Sandeep V. Raut ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Fused deposition modeling (FDM) is one of the thirty techniques of rapid prototyping methods that produce prototypes from polymer materials (natural or with different grades). Acrylonitrile butadiene styrene (ABS) is one of the good material among all polymer materials. It is used in the layer by layer manufacturing of the prototype which is in the semi-molten plastic filament form and built up on the platform from bottom to top. In FDM, one of the critical factor is to select the built up orientation of the model since it affects the different areas of the model like main material, support material, built up time, total cost per part and most important the mechanical properties of the part. In view of this, objective of the present study was to investigate the effect of the built-up orientation on the mechanical properties and total cost of the FDM parts. Experiments were carried out on STRATASYS FDM type rapid prototyping machine coupled with CATALYST software and ABS as main material. Tensile and Impact specimens were prepared as per the ASTM standard with different built-up orientation and in three geometrical axes. It can be concluded from the experimental analysis that built orientation has significant affect on the tensile, impact and total cost of the FDM parts. These conclusions will help the design engineers to decide on proper build orientation, so that FDM parts can be fabricated with good mechanical properties at minimum manufacturing cost.


2019 ◽  
Vol 64 ◽  
pp. 188-194 ◽  
Author(s):  
Irina Miloichikova ◽  
Angelina Bulavskaya ◽  
Yury Cherepennikov ◽  
Boris Gavrikov ◽  
Elisabetta Gargioni ◽  
...  

2014 ◽  
Vol 592-594 ◽  
pp. 1075-1079 ◽  
Author(s):  
Swayam Bikash Mishra ◽  
Siba Sankar Mahapatra

Fused Deposition Modeling (FDM) is one of the efficient rapid prototyping (RP) technologies that forms 3D objects by adding material layer by layer from CAD generated solid models. However, the FDM built part is hardly anisotropic in nature due to layer-by-layer build mechanism. Literature suggests that mechanical property, especially tensile strength, of FDM built part is severely affected by process parameters. Among all the parameters, contour number happens to be an important parameter because it reduces stress concentration resulting in avoidance of premature breakdown. Therefore, in this work contour number along with five important process parameters such as layer thickness, raster width, part orientation, raster angle and air gap are considered and their effect on tensile strength of FDM built parts is studied. Experiments are conducted using Face Centred Central Composite Design (FCCCD) in order to reduce the experimental runs. An optimal parameter setting has been suggested for the maximisation of tensile strength of the FDM built parts.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Sasa Gao ◽  
Ruijuan Liu ◽  
Hua Xin ◽  
Haitao Liang ◽  
Yunfei Wang ◽  
...  

Additive manufacturing provides a novel and robust way to prepare medical product with anatomic matched geometry and tailored mechanical performance. In this study, the surface characteristics, microstructure, and mechanical properties of fused deposition modeling (FDM) prepared polyether-ether-ketone (PEEK) were systematically studied. During the FDM process, the crystal unit cell and thermal attribute of PEEK material remained unchanged, whereas the surface layer generally became more hydrophilic with an obvious reduction in surface hardness. Raster angle has a significant effect on the mechanical strength but not on the failure mechanism. In practice, FDM fabricated PEEK acted more like a laminate rather than a unified structure. Its main failure mechanism was correlated to the internal voids. The results show that horizontal infill orientation with 30° raster angle is promising for a better comprehensive mechanical performance, and the corresponding tensile, flexural, and shear strengths are (76.5 ± 1.4) MPa, (149.7 ± 3.0) MPa, and (55.5 ± 1.8) MPa, respectively. The findings of this study provide guidelines for FDM-PEEK to enable its realization in applications such as orthopedic implants.


2011 ◽  
Vol 110-116 ◽  
pp. 2245-2251 ◽  
Author(s):  
G. Pavan Kumar ◽  
Srinivasa Prakash Regalla

Fused deposition modeling (FDM) has evolved as one of the fastest growing layer manufacturing (LM) technology because of its capability to build even functional plastic parts with geometrical complexity in a reasonable time period. The quality of the production process depends on various process parameters, the most important of them being layer thickness (h), raster angle (θ), orientation (φ), contour width (c) and part raster width (w). In the present study, the influence of these parameters on two process quality parameters, namely, build time and the support material volume are studied on a rotational part modeled on a FDM 200mc machine. A 25 full factorial Design of Experiments (DOE) methodology was employed and the results for build time and support material volume of the 32 experiments were analyzed using Design Expert®. Analysis of variance (ANOVA) was done and based on the ANOVA results the model equation for the two quality parameters in both coded and original factors has been developed. Comments on the results obtained and interaction effects are included at the end of the paper.


2022 ◽  
Vol 10 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Shilpesh R. Rajpurohit ◽  
Harshit K. Dave ◽  
Kamlakar P. Rajurkar

The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2344
Author(s):  
Ruoxiang Gao ◽  
Jun Xie ◽  
Jinghui Yang ◽  
Chaojie Zhuo ◽  
Jianzhong Fu ◽  
...  

As a special engineering polymer, polyether ether ketone (PEEK) has been used widely due to its excellent mechanical properties, high thermal stability, and chemical resistance. Fused deposition modeling (FDM) is a promising process for fabricating PEEK parts. However, due to the semi-crystalline property and high melting point of PEEK, determining appropriate process parameters is important to reduce warpage deformation and improve the mechanical properties of PEEK. In this article, the influence of raster angle and infill density was determined by single factor experiment, which are the two most important parameters. The results showed that samples with 0°/90° raster angle and 50% infill density had the best comprehensive properties in terms of warpage deformation, tensile strength, and specific strength. Subsequently, based on the results above, the effects of printing speed, nozzle temperature, platform temperature, raster width, and layer thickness were analyzed by orthogonal experiment. The results indicated that platform temperature had the greatest impact on warpage deformation while printing speed and nozzle temperature were significant parameters on tensile strength. Through optimization, warpage deformation of the samples could be reduced to almost 0 and tensile strength could increase by 19.6% (from 40.56 to 48.50 MPa). This will support the development of FDM for PEEK.


2011 ◽  
Vol 10 (02) ◽  
pp. 241-259 ◽  
Author(s):  
ANOOP KUMAR SOOD ◽  
VEDANSH CHATURVEDI ◽  
SAURAV DATTA ◽  
SIBA SANKAR MAHAPATRA

Fused deposition modeling (FDM) is a process by which functional parts can be produced rapidly through deposition of fused layers of material according to a numerically defined cross-sectional geometry. Literature suggests that process parameters largely influence on quality characteristics of rapid prototyping (RP) parts. A functional part is subjected to different loading conditions in actual practice. Therefore, process parameters need to be determined in such a way that they collectively optimize more than one response simultaneously. To address this issue, effect of important process parameters viz., layer thickness, orientation, raster angle, raster width, and air gap have been studied. The responses considered in this study are mechanical property of FDM produced parts such as tensile, bending and impact strength. The multiple responses are converted into a single response using principal component analysis (PCA) so that influence of correlation among the responses can be eliminated. Resulting single response is nothing but the weighted sum of three principal components that explain almost hundred percent of variation. The experiments have been conducted in accordance with Taguchi's orthogonal array to reduce the experimental runs. The results indicate that all the factors such as layer thickness, orientation, raster angle, raster width and air gap and interaction between layer thickness and orientation significantly influence the response. Optimum parameter settings have been identified to simultaneously optimize three responses. The mechanism of failure is explained with the help of SEM micrographs.


Sign in / Sign up

Export Citation Format

Share Document