scholarly journals Retraction notice to Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming [Composites Part B 42 (2011) 473-48]

Author(s):  
Ali Nazari ◽  
Shadi Riahi
Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


2019 ◽  
Vol 9 (24) ◽  
pp. 5534 ◽  
Author(s):  
Mahdi Shariati ◽  
Mohammad Saeed Mafipour ◽  
Peyman Mehrabi ◽  
Alireza Bahadori ◽  
Yousef Zandi ◽  
...  

Channel shear connectors are known as an appropriate alternative for common shear connectors due to having a lower manufacturing cost and an easier installation process. The behavior of channel connectors is generally determined through conducting experiments. However, these experiments are not only costly but also time-consuming. Moreover, the impact of other parameters cannot be easily seen in the behavior of the connectors. This paper aims to investigate the application of a hybrid artificial neural network–particle swarm optimization (ANN-PSO) model in the behavior prediction of channel connectors embedded in normal and high-strength concrete (HSC). To generate the required data, an experimental project was conducted. Dimensions of the channel connectors and the compressive strength of concrete were adopted as the inputs of the model, and load and slip were predicted as the outputs. To evaluate the ANN-PSO model, an ANN model was also developed and tuned by a backpropagation (BP) learning algorithm. The results of the paper revealed that an ANN model could properly predict the behavior of channel connectors and eliminate the need for conducting costly experiments to some extent. In addition, in this case, the ANN-PSO model showed better performance than the ANN-BP model by resulting in superior performance indices.


Sign in / Sign up

Export Citation Format

Share Document