Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics

Author(s):  
Wei-Wei Kong ◽  
Chang-Ge Zhou ◽  
Kun Dai ◽  
Li-Chuan Jia ◽  
Ding-Xiang Yan ◽  
...  
2019 ◽  
Vol 7 (43) ◽  
pp. 13468-13476 ◽  
Author(s):  
Min Zhao ◽  
Dawei Li ◽  
Jieyu Huang ◽  
Di Wang ◽  
Alfred Mensah ◽  
...  

Stretchable and wearable electronics, as a well-researched engineering frontier, can be applied in human motion detection, thermal therapy, personal healthcare monitoring and smart human–machine interactions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1980
Author(s):  
Wei Pan ◽  
Wei Xia ◽  
Feng-Shuo Jiang ◽  
Xiao-Xiong Wang ◽  
Zhi-Guang Zhang ◽  
...  

Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor based on dip-coating of graphene onto an electrospun thermoplastic polyurethane (TPU) nanofibrous membrane, followed by spinning of the TPU/graphene nanomembrane into an intertwined-coil configuration. Owing to the intertwined-coil configuration and the synergy of the two structures (nanoscale fiber gap and microscale twisting of the fiber gap), the conductive strain sensor showed a stretchability of 1100%. The self-inter-locking of the sensor prevents the coils from uncoiling. Thanks to the intertwined-coil configuration, most of the fibers were wrapped into the coils in the configuration, thus avoiding the falling off of graphene. This special configuration also endowed our strain sensor with an ability of recovery under a strain of 400%, which is higher than the stretching limit of knees and elbows in human motion. The strain sensor detected not only subtle movements (such as perceiving a pulse and identifying spoken words), but also large movements (such as recognizing the motion of fingers, wrists, knees, etc.), showing promising application potential to perform as flexible strain sensors.


Author(s):  
Hongyang Shi ◽  
Xinda Qi ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Chuan Wang ◽  
...  

Abstract This paper proposes a highly stretchable strain sensor using viscous conductive materials as resistive element and introduces a simple and economic fabrication process by encapsulating the conductive materials between two layers of silicone rubbers Ecoflex 00-30. The fabrication process of the strain sensor is presented, and the properties of the viscous conductive materials are studied. Characterization shows that the sensor with conductive gels, toothpastes, carbon paint, and carbon grease can sustain a maximum tensile strain of 200% and retain good repeatability, with a strain gauge factor of 2.0, 1.75, 3.0, and 7.5, respectively. Furthermore, strain sensors with graphite and carbon nanotubes mixed with conductive gels are fabricated to explore how to improve the gauge factor. With a focus on the most promising material, conductive carbon grease, cyclic stretching tests are conducted and show good repeatability at 100% strain for 100 cycles. Lastly, it is demonstrated that the stretchable strain sensor made of carbon grease is capable of measuring finger bending. With its easy and low-cost fabrication process, large strain detection range and good gauge factor, the conductive materials-based strain sensors are promising for future biomedical, wearable electronics and rehabilitation applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79114-79120 ◽  
Author(s):  
Yichun Ding ◽  
Jack Yang ◽  
Charles R. Tolle ◽  
Zhengtao Zhu

A highly stretchable and sensitive strain sensor assembled by embedding a free-standing electrospun carbon nanofibers (CNFs) mat in a polyurethane (PU) matrix shows a fast, stable, and reproducible response to strain up to 300%.


2016 ◽  
Vol 4 (8) ◽  
pp. 4288-4295 ◽  
Author(s):  
Yuanqing Li ◽  
Yarjan Abdul Samad ◽  
Tarek Taha ◽  
Guowei Cai ◽  
Shao-Yun Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document