Effect of the double bond content of sizing agents on the mechanical properties of carbon fibre reinforced vinyl ester composites

Author(s):  
Xianhe Cheng ◽  
Yuzhang Huang ◽  
Quantao Fang ◽  
Jingwei Gao ◽  
Tianzhi Luo ◽  
...  
2018 ◽  
Vol 31 (2) ◽  
pp. 154-167 ◽  
Author(s):  
Yu Qing Cui ◽  
Zhong Wei Yin

Although the extensive research has expanded on the modification of cyanate ester (CE) resins and the mechanical properties of CE composites, very few studies have been conducted on carbon fibre (CF)/modified CE winding composites and the thermomechanical properties of the composites. In this research, epoxy (EP)-modified novolac cyanate ester (NCE) and bismaleimide (BMI)-modified NCE resins were prepared. The CF/modified CE winding composites were manufactured, and their thermomechanical properties were tested. The optimal winding process was determined, and a preheating technique was implemented. Then, the EP/CE resin (10:90) and the BMI–DBA/CE resin (10:90) were selected as the resin matrix of the winding composite based on the viscosity properties, mechanical properties and thermal analysis (using thermogravimetric analysis and differential scanning calorimetry) of the modified CE resin. The selected resin exhibited good manufacturability at 70°C, good thermal stability and high Tg (above 370°C). The thermomechanical property tests indicate that the modified CE resin composite exhibits an outstanding mechanical strength at room temperature and at high temperatures (130°C, 150°C and 180°C) compared with that of the pure CE resin composite. The reasons for this enhancement can be attributed to a toughening mechanism and the effect of sizing agents on the CFs.


Polymer ◽  
1998 ◽  
Vol 39 (15) ◽  
pp. 3417-3424 ◽  
Author(s):  
N.S. Broyles ◽  
K.N.E. Verghese ◽  
S.V. Davis ◽  
H. Li ◽  
R.M. Davis ◽  
...  

Author(s):  
J Li ◽  
L Q Zhang

The main objective of this article is to develop a high wear resistance carbon fibre (CF)-reinforced polyether ether ketone composite with the addition of multi-wall carbon nano-tubes (MWCNT). These compounds were well mixed in a Haake batch mixer and compounded polymers were fabricated into sheets of known thickness by compression moulding. Samples were tested for wear resistance with respect to different concentrations of fillers. Wear resistance of a composite with 20 wt% of CF increases when MWCNT was introduced. The worn surface features have been examined using a scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher wear resistance with the addition of carbon nanotubes. Also better interfacial adhesion between carbon and vinyl ester in a carbon-reinforced vinyl ester composite was observed.


2016 ◽  
Vol 51 (6) ◽  
pp. 783-795 ◽  
Author(s):  
Júlio C Santos ◽  
Luciano MG Vieira ◽  
Túlio H Panzera ◽  
André L Christoforo ◽  
Marco A Schiavon ◽  
...  

The work describes the manufacturing and testing of novel hybrid epoxy/carbon fibre composites with silica micro and poly-diallyldimethylammonium chloride-functionalised nanoparticles. A specific chemical dispersion procedure was applied using the poly-diallyldimethylammonium chloride to avoid clustering of the silica nanoparticles. The influence of the various manufacturing parameters, particles loading, and mechanical properties of the different phases has been investigated with a rigorous Design of Experiment technique based on a full factorial design (2131). Poly-diallyldimethylammonium chloride-functionalised silica nanoparticles were able to provide a homogenous dispersion, with a decrease of the apparent density and enhancement of the mechanical properties in the hybrid carbon fibre composites. Compared to undispersed carbon fibre composite laminates, the use of 2 wt% functionalised nanoparticles permitted to increase the flexural modulus by 47% and the flexural strength by 15%. The hybrid carbon fibre composites showed also an increase of the tensile modulus (9%) and tensile strength (5.6%).


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


Sign in / Sign up

Export Citation Format

Share Document