Effectiveness of fibre placement in 3D printed open-hole composites under uniaxial tension

Author(s):  
Haoqi Zhang ◽  
Aonan Li ◽  
Jiang Wu ◽  
Bingyu Sun ◽  
Chun Wang ◽  
...  
2020 ◽  
Vol 2 ◽  
pp. 100007
Author(s):  
E. Zappino ◽  
M. Filippi ◽  
A. Pagani ◽  
M. Petiti ◽  
E. Carrera

2020 ◽  
Vol 54 (20) ◽  
pp. 2687-2695 ◽  
Author(s):  
Seyed HR Sanei ◽  
Andrew Arndt ◽  
Randall Doles

In this study, the effects of stress concentration on the tensile properties of a 3D printed carbon fiber-nylon composite were investigated. The samples were 3D printed with continuous carbon fiber and chopped fiber reinforced nylon. Samples were manufactured with four different open hole sizes as 3. 175 mm (⅛ in), 6.35 mm (¼ in), 9.25 mm (⅜ in), and 12.7 mm (½ in). Five samples were manufactured for each hole size group. Continuous carbon fibers were printed in the longitudinal direction. Additional reinforcements were placed around the periphery of the open hole. Samples were tested under uniaxial tension. The results were compared with the prediction of fracture mechanics theories namely Average and Point Stress Criteria. The results show that failure was initiated at the stress concentration region but the progression into the hole was prevented with the presence of continuous fiber. The experimental findings show that the samples with larger holes are more sensitive to discontinuity than the ones with smaller holes. The results confirm that 3D printing can be used to strengthen the parts at the discontinuity region to mitigate the effect of stress concentration.


2020 ◽  
Vol 26 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Harshit K. Dave ◽  
Ashish R. Prajapati ◽  
Shilpesh R. Rajpurohit ◽  
Naushil H. Patadiya ◽  
Harit K. Raval

Purpose Fused deposition modeling (FDM) is being increasingly used in automotive and aerospace industries because of its ability to produce specimens having difficult geometrical shape. However, owing to lack of critical information regarding the reliability and mechanical properties of FDM-printed parts at various designs, the use of 3D printed parts in these industries is limited. Therefore, the purpose of this paper is to investigate the impact of process parameters of FDM on the tensile strength of open-hole specimen printed using in-house-fabricated polylactic acid (PLA). Design/methodology/approach In the present study, three process parameters, namely, raster angle, layer thickness and raster width, are selected for investigation of tensile strength. To produce the tensile specimens in the FDM machine, the PLA filament is used which is fabricated from PLA granules using a single-screw extruder. Further, the experimental values are measured and critically analysed. Failure modes under tests are studied using scanning electron microscopy (SEM). Findings Results indicate that the raster angle has a significant effect on the tensile strength of open-hole tensile specimen. Specimens built with 0° raster angle, 200-µm layer thickness and 500-µm raster width obtained maximum tensile strength. Originality/value In this work, a new concept of testing a plate that has a rectangular shape and a circular hole at the centre is tested. Open-hole tensile test standard ASTM D5766 has been implemented for the first time for the FDM process.


Author(s):  
Erik Oelsch ◽  
Ralf Landgraf ◽  
Lysander Jankowsky ◽  
Martin Kausch ◽  
Stefan Hoyer ◽  
...  

Abstract3D printing opens up new possibilities for the production of polymeric structures that would not be possible with injection molding. However, it is known that the manufacturing method might have an impact on the mechanical properties of manufactured components. To this end, the mechanical behavior of test specimens made of thermoplastic polyurethane is compared for two different manufacturing methods. In particular, the SEAM technology (screw extrusion additive manufacturing) is compared to a conventional injection molding process. Uniaxial tension test specimens from both manufacturing methods are analyzed in two testing sequences (multi-hysteresis tests to analyze inelastic properties and uniaxial tension until rupture). To get as less perturbation as possible, the 3D-printed samples are printed with only one strand per layer. Moreover, a correction approach based on optical measurements is applied to determine the true cross-sectional area of the test specimens. The mechanical tests reveal that the inelastic material behavior is the same for both manufacturing methods. Instead, 3D-printed specimens show lower maximal stretch values at rupture and an increased variance in the results, which is related to the surface structure of 3D-printed specimens.


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document