Contact force history analysis of composite sandwich plates subjected to low-velocity impact

2006 ◽  
Vol 75 (1-4) ◽  
pp. 582-586 ◽  
Author(s):  
Ik Hyeon Choi
2004 ◽  
Vol 261-263 ◽  
pp. 283-288 ◽  
Author(s):  
Hoon Cheol Park ◽  
Jung Park ◽  
Nam Seo Goo ◽  
Kwang Joon Yoon ◽  
Jae Hwa Lee

Low-velocity impact on composite sandwich panels has been investigated. The contact force is computed from a proposed modified Hertzian contact law. In the proposed contact law, the exponent is adjusted and the through-the-thickness elastic constant of honeycomb core is reduced properly to approximately predict the measured contact force-time history during the impact. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds, especially for thick sandwich plates.


2016 ◽  
Vol 725 ◽  
pp. 127-131 ◽  
Author(s):  
Kumar V. Akshaj ◽  
P. Surya ◽  
M.K. Pandit

Dent resistance of structures is one of the important design parameters to consider in automotive, aerospace, packaging and transportation of fragile goods, civil engineering and marine industries. It is important to study the dynamic impact response of various combinations of skin and core materials which can provide desired fracture toughness and highest strength to weight ratio for such applications. This paper discusses the low velocity impact response of sandwich structures having unique combination of mild steel as skin material bonded to thermoplastics/PU foam as core material. HDPE, LDPE and polypropylene were the choice of thermoplastics and an optimum combination of materials for the sandwich structure was evaluated using drop-weight experimental set up. It is observed that LDPE is the best choice of core material for the sandwich structures considered.


Sign in / Sign up

Export Citation Format

Share Document