Shell finite element models with local kinematic refinements based on Reissner’s Mixed Variational Theorem with layer-wise descriptions

2020 ◽  
Vol 250 ◽  
pp. 112587
Author(s):  
G. Li ◽  
E. Carrera

2011 ◽  
Vol 44 (8) ◽  
pp. 1566-1572 ◽  
Author(s):  
Jef Vanderoost ◽  
Siegfried V.N. Jaecques ◽  
Georges Van der Perre ◽  
Steven Boonen ◽  
Jan D'hooge ◽  
...  




2021 ◽  
Vol 95 (3) ◽  
pp. 47-58
Author(s):  
I.N. SERPIK ◽  
◽  
R.O. SHKOLYARENKO ◽  

Shear-free theory of V.Z. Vlasov remains one of the most reasonable approaches to calculating thin-walled bars taking into account constrained torsion. At the same time, the use of this theory for the analysis of deformations of frame structures still requires research in terms of the conditions for transferring forces in bar connections. As noted in some scientific papers, the balance of bimoments can be significantly broken at the joints of thin-walled bars of an open profile in some designs. This paper deals with this phenomenon for steel I-beam profiles, associated with the presence of inclined stiffeners in joint units. Using shell finite element models, the influence of inclined stiffeners on the appearance of bimoment jumps at the pairwise connection of bars is shown. A dependence is derived that makes it possible to take into account the stiffness of the inclined edge in the bar models from the point of view of the restraint of cross-section warping. On the basis of numerical experiments, it was determined that the introduction of such stiffness into the bar finite element schemes of frame structures allows to reflect the condition of bars interaction in the transferring of bimoments with a sufficiently high accuracy for engineering practice.



2017 ◽  
Vol 50 ◽  
pp. 56-62 ◽  
Author(s):  
Anvar Gilmanov ◽  
Henryk Stolarski ◽  
Fotis Sotiropoulos


2019 ◽  
Vol 815 ◽  
pp. 223-228
Author(s):  
Qin Tian ◽  
Cheng Hao Hang ◽  
Yun Peng Zou ◽  
Zi Xin Wan

In order to improve the mechanical behaviour of bridge steel hoops, the plate shell finite element models of several steel hoops were established by using the general finite element software ABAQUS. Through changing the structural parameters of the stiffening plates, the influence of the stiffening plates on the mechanical properties of the steel hoops was explored. The calculation results show that the stress distribution at both ends of the steel hoop is uneven and there is a phenomenon of stress concentration. The spacing of stiffening plates has great influence on the mechanical properties of steel hoop. Some measures to improve the mechanical properties of steel hoop are given.



2018 ◽  
Vol 209 ◽  
pp. 163-181 ◽  
Author(s):  
Jack S. Hale ◽  
Matteo Brunetti ◽  
Stéphane P.A. Bordas ◽  
Corrado Maurini


Author(s):  
Bryan Dunlap ◽  
Hassan Ziada ◽  
John Julyk

Typically the use of SHELL finite elements to model nozzle/vessel interfaces will not include details of the weld at the interface. The omission of the weld details from SHELL element models is due to the difficulty in implementing such details and the assumption that additional interface stiffness due to the weld will have a negligible effect on results at locations of interest for Code evaluation. This study will demonstrate a proposed method for modeling weld details with SHELL elements and then evaluate the magnitude of the weld stiffness effect on results and Code compliance. The method of modeling the weld details with SHELL elements used in this study will follow the guidance provided by ASME BPVC Section VIII, Division 2, Annex 5.A [2] for such interfaces. Models of nozzle/vessel interfaces will be shown comparing results of SOLID element models with and without the weld detail, and then SHELL element models both with and without the weld detail. The results from these models will be evaluated and recommendations for future modeling and evaluation of nozzle/shell interfaces with SHELL elements will be offered.



2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

A formulation of the Generalised Beam Theory (GBT) is presented for the 1st order inelastic analysis of thin-walled steel bars subjected to arbitrary loading and boundary conditions. Five illustrative examples are shown to validate the theory for cases involving global deformation only, namely uniform bending, non-uniform bending, combined bending and axial compression, and non-uniform torsion. Lastly, the results are validated against ABAQUS using beam and shell finite element models. The correlation is typically great concerning equilibrium paths, deformed configurations, and stress diagrams. In those cases where results do not compare so well, possible causes are pointed out.



Sign in / Sign up

Export Citation Format

Share Document