Design optimization of moderately thick hexagonal honeycomb sandwich plate with modified multi-objective particle swarm optimization by genetic algorithm (MOPSOGA)

2020 ◽  
Vol 252 ◽  
pp. 112626 ◽  
Author(s):  
A.R. Namvar ◽  
A.R. Vosoughi
Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


Author(s):  
Javad Ansarifar ◽  
Reza Tavakkoli-Moghaddam ◽  
Faezeh Akhavizadegan ◽  
Saman Hassanzadeh Amin

This article formulates the operating rooms considering several constraints of the real world, such as decision-making styles, multiple stages for surgeries, time windows for resources, and specialty and complexity of surgery. Based on planning, surgeries are assigned to the working days. Then, the scheduling part determines the sequence of surgeries per day. Moreover, an integrated fuzzy possibilistic–stochastic mathematical programming approach is applied to consider some sources of uncertainty, simultaneously. Net revenues of operating rooms are maximized through the first objective function. Minimizing a decision-making style inconsistency among human resources and maximizing utilization of operating rooms are considered as the second and third objectives, respectively. Two popular multi-objective meta-heuristic algorithms including Non-dominated Sorting Genetic Algorithm and Multi-Objective Particle Swarm Optimization are utilized for solving the developed model. Moreover, different comparison metrics are applied to compare the two proposed meta-heuristics. Several test problems based on the data obtained from a public hospital located in Iran are used to display the performance of the model. According to the results, Non-dominated Sorting Genetic Algorithm-II outperforms the Multi-Objective Particle Swarm Optimization algorithm in most of the utilized metrics. Moreover, the results indicate that our proposed model is more effective and efficient to schedule and plan surgeries and assign resources than manual scheduling.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Zhe Xiong ◽  
Xiao-Hui Li ◽  
Jing-Chang Liang ◽  
Li-Juan Li

In this study, a novel multi-objective hybrid algorithm (MHGH, multi-objective HPSO-GA hybrid algorithm) is developed by crossing the heuristic particle swarm optimization (HPSO) algorithm with a genetic algorithm (GA) based on the concept of Pareto optimality. To demonstrate the effectiveness of the MHGH, the optimizations of four unconstrained mathematical functions and four constrained truss structural problems are tested and compared to the results using several other classic algorithms. The results show that the MHGH improves the convergence rate and precision of the particle swarm optimization (PSO) and increases its robustness.


2013 ◽  
Vol 333-335 ◽  
pp. 1361-1365
Author(s):  
Xiao Xiong Liu ◽  
Heng Xu ◽  
Yan Wu ◽  
Peng Hui Li

In order to overcome the difficult of large amount of calculation and to satisfy multiple design indicators in the design of control laws, an improved multi-objective particle swarm optimization (PSO) algorithm was used to design control laws of aircraft. Firstly, the hybrid concepts of genetic algorithm were introduced to particle swarm optimization (PSO) algorithm to improve the algorithm. Then based on aircraft flying quality the reference models were built, and then the tracking error, settling time and overshoot were used as the optimization goal of the control laws design. Based on this multi-objective optimize problem the attitude hold control laws were designed. The simulation results show the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document