Mechanical behavior of high-strength concrete filled high-strength steel tubular stub columns stiffened with encased I-shaped CFRP profile under axial compression

2021 ◽  
pp. 114504
Author(s):  
Guochang Li ◽  
Yu Yang ◽  
Zhijian Yang ◽  
Chen Fang ◽  
Hanbin Ge ◽  
...  
2018 ◽  
Vol 22 (5) ◽  
pp. 1089-1105 ◽  
Author(s):  
Xizhi Zhang ◽  
Sixin Niu ◽  
Jia-Bao Yan ◽  
Shaohua Zhang

In order to simulate the seismic behaviour of the prestressed high-strength concrete piles under working state, six full-scale prestressed high-strength concrete piles were tested under combined axial compression and cyclic horizontal loads. Different axial compression levels and prestressing levels of prestressed tendons were studied in this test programme. The failure mode, bending resistance, displacement ductility, stiffness degradation and energy dissipation of the prestressed high-strength concrete piles under different loading scenarios were measured and analysed. Test results indicated that the axial compression ratio and prestressing level of prestressed tendon significantly influenced the seismic performance of prestressed high-strength concrete piles. Theoretical models were developed to predict cracking, yielding and ultimate bending resistances of the prestressed high-strength concrete pile under combined compression and bending. Finite element model was also developed to simulate the ultimate strength behaviour of the prestressed high-strength concrete pile under combined compression and flexural bending. The accuracies of the theoretical and finite element model were checked through validations of their predictions against the reported test results.


2020 ◽  
Vol 164 ◽  
pp. 105765 ◽  
Author(s):  
Binglin Lai ◽  
J.Y. Richard Liew ◽  
Akshay Venkateshwaran ◽  
Shan Li ◽  
Mingxiang Xiong

Sign in / Sign up

Export Citation Format

Share Document