Characterization of mechanical and dynamic properties of natural fiber reinforced laminated composite multiple-core sandwich plates

2021 ◽  
pp. 115141
Author(s):  
Rajeshkumar Selvaraj ◽  
Apichit Maneengam ◽  
M. Sathiyamoorthy
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2841 ◽  
Author(s):  
Mauricio Torres-Arellano ◽  
Victoria Renteria-Rodríguez ◽  
Edgar Franco-Urquiza

This work deals with the manufacture and mechanical characterization of natural-fiber-reinforced biobased epoxy resins. Biolaminates are attractive to various industries because they are low-density, biodegradable, and lightweight materials. Natural fibers such as Ixtle, Henequen, and Jute were used as reinforcing fabrics for two biobased epoxy resins from Sicomin®. The manufacture of the biolaminates was carried out through the vacuum-assisted resin infusion process. The mechanical characterization revealed the Jute biolaminates present the highest stiffness and strength, whereas the Henequen biolaminates show high strain values. The rigid and semirigid biolaminates obtained in this work could drive new applications targeting industries that require lightweight and low-cost sustainable composites.


DYNA ◽  
2019 ◽  
Vol 86 (208) ◽  
pp. 153-161
Author(s):  
Carlos A. Meza ◽  
Ediguer E. Franco ◽  
Joao L. Ealo

Laminated composites are widely used in applications when a high strength-to-weight ratio is required. Aeronautic, naval and automotive industries use these materials to reduce the weight of the vehicles and, consequently, fuel consumption. However, the fiber-reinforced laminated materials are anisotropic and the elastic properties can vary widely due to non-standardized manufacturing processes. The elastic characterization using mechanical tests is not easy, destructive and, in most cases, not all the elastic constants can be obtained. Therefore, alternative techniques are required to assure the quality of the mechanical parts and the evaluation of new materials. In this work, the implementation of the ultrasonic through-transmission technique and the characterization of some engineering materials is reported. Isotropic materials and laminated composites of carbon fiber and glass fiber in a polymer matrix were characterized by ultrasound and mechanical tests. An improved methodology for the transit time delay calculation is reported.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Balasubramanian ◽  
Thozhuvur Govindaraman Loganathan ◽  
R. Srimath

Purpose The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications. Design/methodology/approach Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties. Findings The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers. Originality/value This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.


Sign in / Sign up

Export Citation Format

Share Document