Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: experimental investigation and analytical modelling

2022 ◽  
pp. 115206
Author(s):  
Jie Mei ◽  
Jiayi Liu ◽  
Wei Huang
Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 424-432 ◽  
Author(s):  
Hossein Taghipoor ◽  
Arameh Eyvazian ◽  
Farayi Musharavati ◽  
T.A. Sebaey ◽  
Ahmad Ghiaskar

2021 ◽  
Vol 231 ◽  
pp. 111735
Author(s):  
Philipp Preinstorfer ◽  
Patrick Huber ◽  
Tobias Huber ◽  
Benjamin Kromoser ◽  
Johann Kollegger

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 856-874
Author(s):  
A. Basit F. Alla Fadlelmola ◽  
Zhihua Chen ◽  
Yansheng Du ◽  
Rui Ma ◽  
Jia Ma

Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 97 ◽  
Author(s):  
P. Sharafi ◽  
S. Nemati ◽  
B. Samali ◽  
M. Ghodrat

In this paper, the development process of a deployable modular sandwich panelized system for rapid-assembly building construction is presented, and its structural performance under some different action effects is investigated. This system, which includes an innovative sandwich panel and its integrated connections, can be used as structural walls and floors in quickly-assembled postdisaster housing, as well as load-bearing panels for prefabricated modular construction and semipermanent buildings. Panels and connections are composed of a pneumatic fabric formwork, and two 3D high-density polyethylene (HDPE) sheets as the skins, filled with high-density rigid polyurethane (PU) foam as the core. HDPE sheets manufactured with a studded surface considerably enhance stress distribution, buckling performance, and delamination strength of the sandwich panel under various loading conditions. The load-carrying behavior of the system in accordance with some American Society for Testing and Materials (ASTM) standards is presented here. The results show the system satisfies the codes’ criteria regarding semipermanent housing.


2016 ◽  
Vol 20 (5) ◽  
pp. 617-638 ◽  
Author(s):  
MP Arunkumar ◽  
Jeyaraj Pitchaimani ◽  
KV Gangadharan

This paper presents the studies carried out on bending and free vibration behavior of truss core sandwich panel filled with foam typically used in aerospace applications. Equivalent stiffness properties for foam-filled truss core sandwich panel are derived by idealizing 3D foam-filled sandwich panel to an equivalent 2D orthotropic thick plate continuum. The accuracy of the derived elastic property is ensured by the numerical comparison of free vibration response of 3D and its equivalent 2D finite element model. The derived stiffness constants were used in closed form solution to evaluate the maximum deflection of the continuum. The results show that the free vibration and static behavior of the sandwich panel can be enhanced in due consideration to the space constraint by filling foam in the empty space of core. The results also reveal that triangular core foam-filled sandwich panel deflects less compared to other cores. From the free vibration analysis, effect of filling foam is effective in cellular and trapezoidal core.


1980 ◽  
Vol 47 (2) ◽  
pp. 383-388 ◽  
Author(s):  
K. Kemmochi ◽  
T. Akasaka ◽  
R. Hayashi ◽  
K. Ishiwata

In this paper, a modified theory based upon Reissner’s procedure for the shear-lag effect of the sandwich panel is presented, which includes the effects of the anisotropy of the faces and the shearing rigidity of the core. In order to verify this theory, bending experiments were performed with sandwich panels composed of a soft core, stiffeners, and orthotropic faces. It was found that the effective bending rigidity calculated from this theory was lower than that derived from the classical bending theory and that the theoretical strain distribution on the faces agreed well with the experimental results.


2018 ◽  
Vol 22 (4) ◽  
pp. 929-947 ◽  
Author(s):  
LL Yan ◽  
B Yu ◽  
B Han ◽  
QC Zhang ◽  
TJ Lu ◽  
...  

In this study, a closed-cell aluminum foam was filled into the interspaces of a sandwich panel with corrugated cores to form a composite structure. The novel structure is expected to have enhanced foam-filled cores with high specific strength and energy absorption capacity. An out-of-plane compressive load under low-velocity impact was experimentally and numerically carried out on both the empty and foam-filled sandwich panels as well as on the aluminum foam. It is found that the empty corrugated sandwich panel has poor energy absorption capacity due to the core member buckling compared to that of the aluminum foam. However, by the filling of the aluminum foam, the impact load resistance of the corrugated panel was increased dramatically. The loading-time response of the foam-filled panel performs a plateau region like the aluminum foam, which has been proved to be an excellent energy absorption material. Numerical results demonstrated that the aluminum foam filling can decrease the corrugated core member defects sensitivity and increase its stability dramatically. The plastic energy dissipation of the core member for the foam-filled panel is much higher than that of the empty one due to the reduced buckling wavelength caused by the aluminum foam filling.


Sign in / Sign up

Export Citation Format

Share Document