Thermodynamic properties and bound state solutions of Schrodinger equation with Mobius square plus screened-Kratzer potential using Nikiforov-Uvarov method

2021 ◽  
Vol 1196 ◽  
pp. 113132
Author(s):  
Ituen B. Okon ◽  
Oyebola O. Popoola ◽  
E. Omugbe ◽  
Akaninyene D. Antia ◽  
Cecilia N. Isonguyo ◽  
...  
2021 ◽  
Vol 3 (3) ◽  
pp. 38-41
Author(s):  
E. B. Ettah ◽  
P. O. Ushie ◽  
C. M. Ekpo

In this paper, we solve analytically the Schrodinger equation for s-wave and arbitrary angular momenta with the Hua potential is investigated respectively. The wave function as well as energy equation are obtained in an exact analytical manner via the Nikiforov Uvarov method using two approximations scheme. Some special cases of this potentials are also studied.


2016 ◽  
Vol 94 (5) ◽  
pp. 517-521 ◽  
Author(s):  
Akpan N. Ikot ◽  
Tamunoimi M. Abbey ◽  
Ephraim O. Chukwuocha ◽  
Michael C. Onyeaju

In this paper, we obtain the bound state energy eigenvalues and the corresponding eigenfunctions of the Schrödinger equation for the pseudo-Coulomb potential plus a new improved ring-shaped potential within the framework of cosmic string space–time using the generalized parametric Nikiforov–Uvarov method. Our results are in good agreement with other works in the cosmic string space–time and reduced to those in the Minkowski space–time when α = 1.


2009 ◽  
Vol 18 (03) ◽  
pp. 631-641 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
A. I. AHMADOV

In this work, the analytical solution of the radial Schrödinger equation for the Woods–Saxon potential is presented. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary l states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of n and l quantum numbers.


Author(s):  
G.T. Osobonye ◽  
U.S. Okorie ◽  
P.O. Amadi ◽  
A.N. Ikot

In this research, the radial Schrodinger equation for a newly proposed screened Kratzer-Hellmann potential model was studied via the conventional Nikiforov-Uvarov method. The approximate bound state solution of the Schrodinger equation was obtained using the Greene-Aldrich approximation in addition to the normalized eigenfunction for the new potential model, both analytically and numerically. These results were employed to evaluate the rotational-vibrational partition function and other thermodynamic properties for the screened Kratzer-Hellmann potential. The results obtained have been graphically discussed. Also, the normalized eigenfunction has been used to calculate some information-theoretic measures including Shannon entropy and Fisher information for low lying states in both position and momentum spaces numerically. The Shannon entropy results obtained agreed with the Bialynicki-Birula and Mycielski inequality, while the Fisher information results obtained agreed with the Stam, Crammer-Rao inequality. Also, an alternating increasing and decreasing localization across the screening parameter for both eigenstates were observed.


2021 ◽  
Author(s):  
Ifeanyi Jude Njoku ◽  
Chibueze Paul Onyenegecha ◽  
Chioma J Okereke ◽  
Ekwevugbe Omugbe ◽  
Emeka Onyeocha

Abstract The study presents the thermodynamic properties of the Iodine and Scandium Flouride molecules with molecular Deng-Fan potential. The bound state energy solution of the radial Schrodinger equation is obtained via the formula method. The partition function and other thermodynamic properties are evaluated via the Poisson summation approach. The numerical values of energy of the I2 and ScF molecules are found to be in agreement with results obtained from other methods in the literature. The results further show that the partition function decreases, and then converges to a constant value as temperature increases.


2008 ◽  
Vol 23 (12) ◽  
pp. 1919-1927 ◽  
Author(s):  
YAN-FU CHENG ◽  
TONG-QING DAI

The bound state solutions of the Schrödinger equation with a new ring-shaped nonharmonic potential are presented using exactly the Nikiforov–Uvarov method. It is found that the solutions of the angular wave function can be expressed by Jacobi polynomial and radial wave functions are given by the generalized Laguerre polynomials. We also discuss the special case for α = 0 and β = 0 respectively.


Sign in / Sign up

Export Citation Format

Share Document