The use of the diagonal compression test to identify the shear mechanical parameters of masonry

2010 ◽  
Vol 24 (5) ◽  
pp. 677-685 ◽  
Author(s):  
Chiara Calderini ◽  
Serena Cattari ◽  
Sergio Lagomarsino
2021 ◽  
Author(s):  
Lorenzo Scandolo ◽  
Stefano Podestà

Abstract The evaluation of structural safety derives from the knowledge of material properties. In case of existent masonry building, the definition of reliable mechanical parameters could be a very difficult task to be achieved. For this reason, an estimation of these values is useful, for example it is the first phase of the knowledge process, for simplified mechanical model or when NTD test is the only possibility.The transversal connection in masonry panels is a technological detail that affects the static and seismic behavior and could significantly increase the strength of the element.In this paper the effect of transversal connection in double-leaf brickwork masonry panels is evaluated by diagonal compression tests. To achieve this goal, a new set-up was designed to load each leaf independently.The results have shown an increment of about 20% in strength if transversal connection is present. If the leaves have very different mechanical parameters, the tests highlight an unexpected behavior.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiabing Liu ◽  
Shaohui He ◽  
Dahai Wang

Discontinuous defect in the rockmass is a key influential factor in controlling the strength behavior, and how to estimate the anisotropic strength and scale effect on the defected rockmass is the remaining challenging focus in engineering application. In the present study, intact tuff samples cored from the Xiabeishan tunnel engineering in situ are conducted by experiment tests (i.e., uniaxial compression test, triaxial compression test, and Brazilian tensile test) to obtain the corresponding mechanical parameters. Results from the numerical simulations using the particle flow code (PFC) by the flat-jointed model (FJM) are performed to match the macroparameters from experimental results. It is observed that numerical results have good agreement with the macroscopic mechanical parameters of intact samples including UCS, BTS, triaxial compression strength, and corresponding deformation parameters. Finally, a series of uniaxial and confining compression tests are conducted by using a synthetic rockmass (SRM) method which is coupled with the discrete element method (DEM) and discrete fracture network (DFN). Then, the anisotropy and scale effects on the strength characteristics of the defected rockmass are investigated. The results show that defects have a vital effect on the failure mode and strength behavior of the rockmass in the research region. The strength parameters are changed with the specimen size. The REV size of the considered defected rockmass is regarded as 5 × 10 m, and this size is also influenced by the confinement level. The anisotropy of macroscopic strength parameters is found in the considered defected rockmass, whose stress-strain curves and failure modes are also discussed.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Jonas Turesson ◽  
Zahra Sharifi ◽  
Sven Berg ◽  
Mats Ekevad

AbstractThe use of cross-laminated timber (CLT) in constructing tall buildings has increased. So, it has become crucial to get a higher in-plane stiffness in CLT panels. One way of increasing the shear modulus, G, for CLT panels can be by alternating the layers to other angles than the traditional 0° and 90°. The diagonal compression test can be used to measure the shear stiffness from which G is calculated. A general equation for calculating the G value for the CLT panels tested in the diagonal compression test was established and verified by tests, finite element simulations and external data. The equation was created from finite element simulations of full-scale CLT walls. By this equation, the influence on the G value was a factor of 2.8 and 2.0 by alternating the main laminate direction of the mid layer from the traditional 90° to 45° and 30°, respectively. From practical tests, these increases were measured to 2.9 and 1.8, respectively. Another influence on the G value was studied by the reduction of the glue area between the layers. It was shown that the pattern of the contact area was more important than the size of the contact area.


2017 ◽  
Vol 747 ◽  
pp. 190-195 ◽  
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Antonella Cecchi ◽  
Emilio Meroi ◽  
Daniel V. Oliveira

An experimental and numerical investigation on an innovative composite reinforced with sisal fibers for masonry strengthening is presented in this paper. A FEM numerical approach is also developed, based on diagonal compression test results, to simulate the shear in-plane response of unreinforced masonry panels (URM) and masonry strengthened with a Fibre Reinforced Cementitious Matrix (FRCM) composite system made with sisal fibers (RM-SISAL).


2012 ◽  
Vol 174-177 ◽  
pp. 291-294
Author(s):  
Bing Xie ◽  
Xiao Qiang Wang ◽  
Xiang Xia

By using PFC2D a numerical specimen of particle aggregates is established. It achieved consistent mechanical parameters of concrete of C35 with the Code for Design of Concrete Structures(GB 50010-2010) by using PFC2D to simulate concrete compression test and it is proved feasible that PFC2D is suitable for simulating compression tests. End friction effect is studied by changing the coefficient of friction of loading plane. The results show that end friction effect will lead to a small cross section in the central and a large cross-section in the end. The compressive strength will increase with the loading plane friction coefficient increases.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 5559-5572 ◽  
Author(s):  
Sven Berg ◽  
Jonas Turesson ◽  
Mats Ekevad ◽  
Anders Björnfot

Cross-laminated timber (CLT) is an engineered wood material that is used in the construction industry, e.g., for floors, walls, and beams. In cases where CLT-elements are used as shear walls, the in-plane-stiffness is an important property. For non-edge glued CLT, in-plane shear stiffness is lower than for edge-glued CLT. To evaluate the non-edge glued CLT panel’s in-plane shear modulus, the diagonal compression test and finite element (FE) simulation was used. FE-models with both isotropic and orthotropic material models were used to calculate the shear stiffness. The FE models using pure shear loads were used as a reference to determine the correct value of the shear modulus. To verify the FE simulations, diagonal compression tests were conducted on 30 CLT samples. A calibration formula was derived using the least square method for calculation of shear modulus. The formula gave accurate results. The results showed that FE simulations can reproduce the same shear stiffness as tests of non-edge glued 3-layer and 5-layer CLT panels.


Sign in / Sign up

Export Citation Format

Share Document