Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders

2016 ◽  
Vol 114 ◽  
pp. 665-672 ◽  
Author(s):  
Lillian Gungat ◽  
Nur Izzi Md. Yusoff ◽  
Meor Othman Hamzah
2022 ◽  
Vol 13 (1) ◽  
pp. 140-152
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

The use of reclaimed asphalt pavement (RAP) and/or recycled asphalt shingles (RAS) in the asphalt mixtures is a common practice in the U.S.A. However, there is a controversy to date on how RAP/RAS interact with virgin asphalt binders (VABs) in asphalt mixtures. For mixtures containing RAP/RAS, the aged asphalt binders in RAP and air-blown asphalt binders in RAS alter the performances of the extracted asphalt binders (EABs). Thus, the rheological properties of EABs from these mixtures require more investigation. The focus of this paper was relating the high-temperature properties of EABs from field cores to the corresponding rolling thin film oven aged virgin asphalt binders (RTFO AVABs). Furthermore, a comparison of the effect of RAP and RAS on the high-temperature rheological properties of EABs was another objective. Different asphalt cores were collected from the field within two weeks after the pavement construction process in 2016. These cores represented eight asphalt mixtures with different asphalt binder replacement percentages by RAP, RAS, or both. The asphalt binders were extracted from these mixtures and considered as RTFO AVABs. The high-temperature rheological properties included the temperature sweep and frequency sweep testing and the multiple stress creep recovery testing. The EABs had higher stiffnesses and elasticates than the corresponding RTFO AVABs because of the aged binders in RAP/RAS. The binders in RAP interacted more readily with VABs than RAS binders.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2585
Author(s):  
Zhelun Li ◽  
Xin Yu ◽  
Yangshi Liang ◽  
Shaopeng Wu

Effective thermal conduction modification in asphalt binders is beneficial to reducing pavement surface temperature and relieving the urban heat island (UHI) effect in the utilization of solar harvesting and snow melting pavements. This study investigated the performance of two nanometer-sized modifiers, graphene (Gr) and carbon nanotubes (CNTs), on enhancing the thermal, physical and rheological properties of asphalt binders. Measurements depending on a transient plant source method proved that both Gr and CNTs linearly increased the thermal conductivity and thermal diffusivity of asphalt binders, and while 5% Gr by volume of matrix asphalt contributed to 300% increments, 5% CNTs increased the two parameters of asphalt binders by nearly 72% at 20 °C. Meanwhile, a series of empirical and rheological properties experiments were conducted. The results demonstrated the temperature susceptibility reduction and high-temperature properties promotion of asphalt binders by adding Gr or CNTs. The variation trends in the anti-cracking properties of asphalt binders modified by Gr and CNTs with the modifier content differed at low temperatures, which may be due to the unique nature of Gr. In conclusion, Gr, whose optimal content is 3% by volume of matrix asphalt, provides superior application potential for solar harvesting and snow melting pavements in comparison to CNTs due to its comprehensive contributions to thermal properties, construction feasibility, high-temperature performance and low-temperature performance of asphalt binders.


2022 ◽  
Vol 318 ◽  
pp. 126161
Author(s):  
Hamzeh F. Haghshenas ◽  
Robert Rea ◽  
Gerald Reinke ◽  
Martins Zaumanis ◽  
Elham Fini

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jiupeng Zhang ◽  
Guoqiang Liu ◽  
Li Xu ◽  
Jianzhong Pei

Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, includingG∗andδ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging onG∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improvesG∗but reducesδ, and the improvement on 70# virgin binder is more significant.G∗/sin⁡δexponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is whyG∗/sin⁡δis higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.


2018 ◽  
Vol 45 (5) ◽  
pp. 407-412
Author(s):  
Debaroti Ghosh ◽  
Mugurel Turos ◽  
Ed Johnson ◽  
Mihai Marasteanu

Pavement preservation is playing an increasingly significant role in maintaining our aged pavement infrastructure under severe budget constraints. One important component is the use of surface treatments based on application of sealants. Recently, a number of new products, called bio sealants, have been used to treat aging pavement surfaces. The objective of this study is to investigate rheological properties of the binders treated with these materials to understand the mechanism by which they may improve pavement performance. One plain asphalt binder and four types of sealants, two oil-based sealants, one water-based sealant, and one traditional emulsion were used in the experimental work. The results obtained using a dynamic shear rheometer and a bending beam rheometer were used to determine the changes in rheological properties and the change in performance grade. It was observed that the oil-based sealants have a significant softening effect of the control binder compared to the water-based sealants. The transverse cracking histories from field investigation were used to verify the laboratory findings.


Sign in / Sign up

Export Citation Format

Share Document