Rheological characterization of asphalt binders treated with bio sealants for pavement preservation

2018 ◽  
Vol 45 (5) ◽  
pp. 407-412
Author(s):  
Debaroti Ghosh ◽  
Mugurel Turos ◽  
Ed Johnson ◽  
Mihai Marasteanu

Pavement preservation is playing an increasingly significant role in maintaining our aged pavement infrastructure under severe budget constraints. One important component is the use of surface treatments based on application of sealants. Recently, a number of new products, called bio sealants, have been used to treat aging pavement surfaces. The objective of this study is to investigate rheological properties of the binders treated with these materials to understand the mechanism by which they may improve pavement performance. One plain asphalt binder and four types of sealants, two oil-based sealants, one water-based sealant, and one traditional emulsion were used in the experimental work. The results obtained using a dynamic shear rheometer and a bending beam rheometer were used to determine the changes in rheological properties and the change in performance grade. It was observed that the oil-based sealants have a significant softening effect of the control binder compared to the water-based sealants. The transverse cracking histories from field investigation were used to verify the laboratory findings.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jiupeng Zhang ◽  
Guoqiang Liu ◽  
Li Xu ◽  
Jianzhong Pei

Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, includingG∗andδ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging onG∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improvesG∗but reducesδ, and the improvement on 70# virgin binder is more significant.G∗/sin⁡δexponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is whyG∗/sin⁡δis higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3326
Author(s):  
Amirhossein Ghasemirad ◽  
Nura Bala ◽  
Leila Hashemian

Asphalt binder comprises four main fractions—asphaltenes (A), saturates (S), aromatics (A), and resins (R)—referred to as “SARA”. Asphaltenes plays an important role in determining the linear viscoelastic behavior of asphalt binders. In this research, asphaltenes are added as a distinct modifier to improve the performance properties of asphalt binder. The modified binders are aged using a rolling thin film oven. A dynamic shear rheometer is then used to measure the rheological properties of the binders at high temperatures. Changes in the chemical composition of the modified binders are also studied through the determination of SARA fractions, using precipitation and gravity-driven chromatography methods. The rheological results show that asphaltenes improve the stiffness and elasticity of asphalt binder. It is also shown that the addition of asphaltenes raises the high Performance grade (PG) temperature of the asphalt binder, with every 6% of asphaltenes added resulting in a one-interval increase in high PG temperature grade. SARA analysis shows that the increase in polar fraction content due to the addition of asphaltenes causes the stiffness, elasticity, and viscosity of asphalt binders to increase. The results indicate that asphaltenes are an effective yet inexpensive additive to improve asphalt binder properties at high temperatures.


2014 ◽  
Vol 599 ◽  
pp. 244-247 ◽  
Author(s):  
Qun Shan Ye ◽  
Chang Jian Ye ◽  
Zhi Lin Sun

Viscosity test, dynamic shear test, dynamic modulus test and creep test were conducted to investigate the rheological properties of high modulus asphalt and its mixture. Test results indicated that the viscosity of hard grade asphalt could be increased when compared with the ordinary asphalt, especially at high temperatures. The complex shear modulus and dynamic modulus of hard-grade asphalt binder and its mixture were increased, which implied that the stiffness of them was enhanced. Furthermore, the elastically portions for viscoelastic property of asphalt binders were increased, which resulted in the reduction of phase angle for hard grade asphalt binders and mixtures. The rutting parameter for hard-grade asphalt mixture was increased remarkably, which revealed that the resistance to permanent deformation could be significantly improved for hard grade asphalt mixture.


2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7727
Author(s):  
Xiaorui Zhang ◽  
Chao Han ◽  
Jun Yang ◽  
Xinquan Xu ◽  
Fan Zhang

With the increasing traffic loading and changing climatic conditions, there is a need to use novel superior performing pavement materials such as high-modulus asphalt binders and asphalt mixtures to mitigate field distress such as rutting, cracking, etc. This laboratory study was thus conducted to explore and substantiate the usage of Rubber Polymer Composite Modifier (RPCM) for high-modulus asphalt binder modification. The base asphalt binder used in the study comprised A-70# Petroleum asphalt binder with RPCM dosages of 0.25%, 0.30%, 0.35%, 0.40% and 0.45%, separately. The laboratory tests conducted for characterizing the asphalt binder rheological and morphological properties included the dynamic mechanical analysis (DM), temperature-frequency sweep in the dynamic shear rheometer (DSR) device, bending beam rheometer (BBR), and florescence microscopic (FM) imaging. The corresponding test results exhibited satisfactory compatibility and potential for using RPCM as a high-modulus asphalt binder modifier to enhance the base asphalt binder’s rheological properties, both with respect to high- and low-temperature performance improvements. For the A-70# Petroleum asphalt binder that was evaluated, the optimum RPCM dosage was found to be 0.30–0.35%. In comparison to styrene–butadiene–styrene (SBS), asphalt binder modification with RPCM exhibited superior high-temperature rutting resistance properties (as measured in terms of the complex modulus and phase angle) and vice versa for the low-temperature cracking properties. Overall, the study beneficially contributes to the literature through provision of a reference datum toward the exploratory usage of RPCM for high-modulus asphalt binder modification and performance enhancements.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042095987
Author(s):  
Ghazi G Al-Khateeb ◽  
Waleed Zeiada ◽  
Mohammed Ismail ◽  
Ahmad Shabib ◽  
Adel Tayara

Major distresses such as rutting, fatigue, and thermal cracking are facing asphalt pavement structures due to continuous heavy traffic loading and climate change. The modification of asphalt binders (one of the main components of the asphalt paving mix) has the potential to mitigate distresses through using different additives. Polymer modified asphalt (PMA) binders showed a noticeable resistance to pavement distresses as reported in previous studies. The present study aims to evaluate the effect of polymer modification on the rheological properties of asphalt binders through laboratory tests. The polymers included styrene-butadiene-styrene (SBS) and epolene emulsifiable (EE2) types. The 60/70 binder was used as a control for comparison. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was also utilized to simulate the effect of PMA binders on the rheological properties under different climatic conditions and structural capacities. Additionally, the MEPDG was further utilized to compare the effect of asphalt binders on rheological properties using four different binder input levels. Findings of the study showed that laboratory tests experienced varying outcomes regarding the most efficient asphalt binder by means of distresses resistance. However, the MEPDG evaluation showed that the overall ranking of asphalt binders positively impacting the rheological properties was as following: (1) 4.5% EE2 PMA, (2) 4% EE2 PMA, (3) 60/70 binder, (4) 5% SBS PMA, and (5) 4% SBS PMA binders. Furthermore, statistical analysis illustrated that the effect of using different binder input levels on the performance of pavement varied relatively to the evaluated distresses. The analysis showed that using different binder input levels would affect, to a certain extent, the asphalt binder influence on rheological properties only when evaluating rutting and fatigue distresses. Therefore, it is recommended that precise asphalt binder inputs, that is, shear complex modulus (G*) and phase angle (δ) are used when designing pavement structures in regions with hot and mild climate conditions.


2020 ◽  
Vol 38 (12A) ◽  
pp. 1832-1841
Author(s):  
Hussein H. Zghair ◽  
Hasan H. Joni ◽  
Maan S. Hassan

This research study examines the practicability of using micro and nano size silica to improve the asphalt characteristics. Asphalt cement penetration grade of (60 /70) was prepared using (0%, 2%, 4% and 6%) of silica filler by weight of asphalt and investigated in terms of the softening point, penetration, and penetration index, viscosity, and ductility values. To modify the asphalt binder, the silica powder was mixed by a mechanical blender set at (2000) rpm at a mixing temperature of 140°C. However, the main challenge is an agglomeration of nano-silica powder which can reduce the ductility of nano silica modified binder. Therefore, this paper studies the efficiency of mixing period to obtain a homogeneous composite binder while alleviating the agglomeration issue. To do so, the effect of periods of mixing ranged between (30 to 60) minutes were examined on characteristics of modified asphalt binders. Overall, the addition of silica filler has an encouraging impact on the asphalt binder rheological properties. Also, the ductility value decreases with the addition of nano-silica content, attributed to the huge surface area and degree of agglomeration.  Furthermore, results exhibited that 6% of micro silica powder and 4 % of nano silica powder were reasonable to develop the rheological properties.


2021 ◽  
Vol 902 ◽  
pp. 135-143
Author(s):  
Mohammad Ali Khasawneh ◽  
Khalid Ghuzlan ◽  
Nada Bani Melhem

Rutting, fatigue cracking and low temperature cracking are the most important distresses in asphalt pavements as a result of changes in rheological properties of asphalt binder. Many types of modifiers were used to enhance asphalt behavior at both low and high temperatures. In this study, carbon nanotubes (CNT) were used as one of many nanomaterials that take a large attention in the latest research related to asphalt modification against different types of distresses. Effect of CNT on rheological properties of asphalt binder was investigated by testing unmodified and CNT modified asphalt binders using two of Superpave devices: Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Penetration, softening point, flash point and rotational viscosity (RV) tests were carried out as well. CNT was added in 0.1%, 0.5% and 1% by weight of asphalt binder. It was found that adding CNT in 0.5% and 1% increase stiffness of asphalt and consequently asphalt pavement rutting resistance. On the other hand, this increase in stiffness affected pavement behavior adversely which is not desirable for fatigue and low temperature cracking. However, Superpave specifications were still satisfied and asphalt binder’s relaxation properties were improved upon CNT modification. It was eventually found that 0.5% of CNT is the optimum percentage for the best performance.


2020 ◽  
Vol 17 (2) ◽  
pp. 1040-1043 ◽  
Author(s):  
Nur Shahira Samsuri ◽  
Norhidayah Abdul Hassan ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
Mohd Rosli Hainin ◽  
Mohd Ezree Abdullah ◽  
...  

This research examines the impacts of adding various source and percentages of waste engine oil (WEO) on the physical and rheological characteristics of asphalt binder comprising aged asphalt binder. A base asphalt binder with penetration grade of 80/100 and aged binder were blended with three sources of WEO at 0%, 5%, 10%, 15%, and 20% by the weight of asphalt binder. These oils were collected from light vehicle (motorcycle), heavy vehicle (lorry), and heavy machinery (tractor). Penetration and softening point procedures were done to define the physical properties of the unmodified and modified asphalt binders. Meanwhile, the rheological property was evaluated with a dynamic shear rheometer (DSR). The results show that the high percentages of WEO increased the penetration and decreased the softening point. The addition of 15% and 20% of WEO especially from heavy machinery reduced the rutting resistance. Therefore, it is recommended that the modification of aged binder with these types of WEO should be up to 10%.


2018 ◽  
Vol 45 (7) ◽  
pp. 594-604 ◽  
Author(s):  
Augusto Cannone Falchetto ◽  
Ki Hoon Moon ◽  
Di Wang ◽  
Chiara Riccardi

In this paper, the possibility of using air as an alternative cooling medium for testing asphalt binder in the bending beam rheometer (BBR) is considered and evaluated. For this purpose, five asphalt binders were characterized with the BBR; creep stiffness, m-value, performance grade (PG), thermal stress, and critical cracking temperature were computed both for ethanol and air. In addition, the rheological Huet model was fitted to the experimental measurements to further investigate the effect of the cooling medium. It was found that air measurements result in stiffer materials, with higher low PG, higher thermal stress, and critical cracking temperature. The parameters of the Huet model confirm such a stiffening effect when air is used. Based on the material response observed in this study, further research is recommended before potentially replacing ethanol with air in the BBR, as the latter appears to provide a substantially different material grading.


Sign in / Sign up

Export Citation Format

Share Document