Complex modulus and fatigue resistance of bituminous mixtures containing hydrated lime

2017 ◽  
Vol 139 ◽  
pp. 24-33 ◽  
Author(s):  
Cong Viet Phan ◽  
Hervé Di Benedetto ◽  
Cédric Sauzéat ◽  
Didier Lesueur ◽  
Simon Pouget ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


Author(s):  
Przemysław Buczynski ◽  
Marek Iwanski

This article presents a laboratory evaluation of the viscoelastic properties of recycled base courses produced with different fillers. The aim of this study was to investigate the influence of loading time and temperature on the complex modulus (E*) and the phase angle (6) of recycled base courses with respect to selected additives used. The mixtures contained reclaimed asphalt pavement RAP, crushed stone from existing base courses and virgin aggregate. Foamed bitumen 50/70 at 2.5% was used as a binder. The hydraulic binder constituted 3.0% of the recycled base course mixture. Portland cement, hydrated lime and cement kiln dust CKD were added as fillers. Evaluation of rheological properties of recycled base courses according to selected additives was carried out to the procedure set out in EN 12697-26 annex D. The evaluation of stiffness modulus was conducted in the direct tension- compression test on cylindrical samples (DTC-CY). The samples were subjected to the cycles of sinusoidal strain with an amplitude Bo < 25μB. All tests were performed over a range of temperatures (5 ºC, 13 ºC, 25 ºC, 40 ºC) and loading times (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz). The results were used to model stiffness modulus master curves of the recycled base courses containing selected additives in the hydraulic binder.


2015 ◽  
Vol 19 (2) ◽  
pp. 167-186 ◽  
Author(s):  
Nguyen Hoang Pham ◽  
Cédric Sauzéat ◽  
Hervé Di Benedetto ◽  
Juan A. González-León ◽  
Gilles Barreto ◽  
...  

2021 ◽  
Vol 1202 (1) ◽  
pp. 012011
Author(s):  
Asres Simeneh ◽  
Alamrew ◽  
Konrad Mollenhauer

Abstract This research investigated the effect of mineral composition of aggregate on moisture sensitivity of bituminous mixtures and explored the benefits of hydrated lime filler and Wetfix BE surfactant additive to improve the resistance of the mix against moisture sensitivity. Basalt, quartzite, and limestone aggregates were selected based on their different mineralogy and 70 -100 penetration graded bitumen binders used during the study. Four laboratory tests the rolling bottle, shaking abrasion, pull-off tensile strength and indirect tensile strength tests were applied to study the effects of aggregate minerals and benefits of hydrated lime and Wetfix BE. Statistical analysis using Two-way ANOVA test conducted for each test to check the outcome significance. Results from each test revealed that mineral composition of aggregate have significant effects on the moisture resistance performance of bituminous mixtures and hydrated lime filler and Wetfix BE surfactant additives have advantages to improve the performance of bituminous mixture against moisture sensitivity and improves the long-term performance of asphalt mix.


2021 ◽  
pp. 585-590
Author(s):  
Reuber Freire ◽  
Hervé Di Benedetto ◽  
Cédric Sauzéat ◽  
Simon Pouget ◽  
Didier Lesueur

2016 ◽  
Vol 43 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Baha Vural Kök ◽  
Mehmet Yilmaz ◽  
Mustafa Akpolat

Recently, crumb rubber (CR) obtained from waste tires and Fischer–Tropsch paraffin are mostly used in bitumen modification to improve the performance of bituminous mixtures. Each of these additives affects the different properties of mixtures. There are limited studies in the literature about the combined usage of additive in the same mixture to utilize the different characteristics. In this study, the stability, stiffness, fatigue resistance, permanent deformation resistance, and moisture susceptibility characteristics of the stone mastic asphalt prepared with the bitumen modified with CR and paraffin were examined and compared with the control mixture. It was determined that CR-modified mixtures showed significantly more elastic characteristics. The mixture in which the 10% CR and 3% paraffin were used together gave better results in terms of moisture susceptibility and fatigue resistance when compared with the control mixture. It was determined that the use of paraffin together with CR contributed to the improved performance, and was in accordance with the CR in terms of mechanical characteristics of stone mastic asphalt.


2020 ◽  
Vol 12 (23) ◽  
pp. 9962
Author(s):  
Pedro Lastra-González ◽  
Irune Indacoechea-Vega ◽  
Miguel A. Calzada-Pérez ◽  
Daniel Castro-Fresno

The potential recyclability of healable asphalt mixtures has been analyzed in this paper. A healable porous asphalt mixture with steel wool fibers was artificially aged in order to assess its recyclability. This mixture was used as reclaimed asphalt in a new porous asphalt mixture, whose mechanical and healing capacities were studied and compared with the behavior of the original porous asphalt mixture. The quantity of reclaimed asphalt mixture added was 40%; besides, in order to recover the properties of the aged binder, and incorporate the last advances in the recyclability of bituminous mixtures, a rejuvenator was also added (SYLVAROAD™ RP1000). The voids test, Cantabro particle loss test, water sensitivity test, stiffness test, and fatigue resistance test were performed to mechanically study the experimental mixture, while the last one (fatigue resistance test) was also used to assess its healing capacity. The results have shown that the healing capacity of the original healable porous asphalt mixture is maintained with similar mechanical performance.


2015 ◽  
Vol 17 (2) ◽  
pp. 271-289 ◽  
Author(s):  
Pierre Gayte ◽  
Hervé Di Benedetto ◽  
Cédric Sauzéat ◽  
Quang Tuan Nguyen

Sign in / Sign up

Export Citation Format

Share Document