Effect of Fiberglass Geogrid Reinforcement to Fatigue Resistance of Bituminous Mixtures

2021 ◽  
pp. 585-590
Author(s):  
Reuber Freire ◽  
Hervé Di Benedetto ◽  
Cédric Sauzéat ◽  
Simon Pouget ◽  
Didier Lesueur
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


2016 ◽  
Vol 43 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Baha Vural Kök ◽  
Mehmet Yilmaz ◽  
Mustafa Akpolat

Recently, crumb rubber (CR) obtained from waste tires and Fischer–Tropsch paraffin are mostly used in bitumen modification to improve the performance of bituminous mixtures. Each of these additives affects the different properties of mixtures. There are limited studies in the literature about the combined usage of additive in the same mixture to utilize the different characteristics. In this study, the stability, stiffness, fatigue resistance, permanent deformation resistance, and moisture susceptibility characteristics of the stone mastic asphalt prepared with the bitumen modified with CR and paraffin were examined and compared with the control mixture. It was determined that CR-modified mixtures showed significantly more elastic characteristics. The mixture in which the 10% CR and 3% paraffin were used together gave better results in terms of moisture susceptibility and fatigue resistance when compared with the control mixture. It was determined that the use of paraffin together with CR contributed to the improved performance, and was in accordance with the CR in terms of mechanical characteristics of stone mastic asphalt.


2020 ◽  
Vol 12 (23) ◽  
pp. 9962
Author(s):  
Pedro Lastra-González ◽  
Irune Indacoechea-Vega ◽  
Miguel A. Calzada-Pérez ◽  
Daniel Castro-Fresno

The potential recyclability of healable asphalt mixtures has been analyzed in this paper. A healable porous asphalt mixture with steel wool fibers was artificially aged in order to assess its recyclability. This mixture was used as reclaimed asphalt in a new porous asphalt mixture, whose mechanical and healing capacities were studied and compared with the behavior of the original porous asphalt mixture. The quantity of reclaimed asphalt mixture added was 40%; besides, in order to recover the properties of the aged binder, and incorporate the last advances in the recyclability of bituminous mixtures, a rejuvenator was also added (SYLVAROAD™ RP1000). The voids test, Cantabro particle loss test, water sensitivity test, stiffness test, and fatigue resistance test were performed to mechanically study the experimental mixture, while the last one (fatigue resistance test) was also used to assess its healing capacity. The results have shown that the healing capacity of the original healable porous asphalt mixture is maintained with similar mechanical performance.


2017 ◽  
Vol 139 ◽  
pp. 24-33 ◽  
Author(s):  
Cong Viet Phan ◽  
Hervé Di Benedetto ◽  
Cédric Sauzéat ◽  
Didier Lesueur ◽  
Simon Pouget ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5680
Author(s):  
Alexandros Margaritis ◽  
Geert Jacobs ◽  
Georgios Pipintakos ◽  
Johan Blom ◽  
Wim Van den bergh

With the increased use of reclaimed asphalt (RA), the ability of bituminous materials to resist fatigue cracking may face a decline mainly due to the aged reclaimed asphalt binder (RAB), especially when RA is used at higher rates and not sufficiently treated. In this study, the bulk scale (asphalt) and its subscale (mortar) were employed to evaluate the effect on fatigue resistance when a RAB is added, by considering three replacement rates: 0%, 40%, and 70% RAB. The fatigue testing of asphalt mixtures was carried out using a four-point bending (4PB) setup, while the mortars were tested using a new column-like geometry utilising a dynamic shear rheometer (DSR). The fatigue properties were further analysed using dissipated energy concepts. The aim of this study was, first, to assess whether the inclusion of a RAB can provide at least similar fatigue properties compared to an all-virgin mix, and second, to evaluate whether the proposed treatment is beneficial for the mixtures with a RAB. The asphalt tests revealed that the inclusion of a 40% RAB led to increased fatigue resistance, whereas the mortar tests showed that the inclusion of RAB has an inverse effect on fatigue life.


2019 ◽  
Vol 2019 (2) ◽  
pp. 36-42
Author(s):  
I.A. Ryabtsev ◽  
◽  
V.V. Knysh ◽  
A.A. Babinets ◽  
S.A. Solovej ◽  
...  
Keyword(s):  

Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Haynes 625SQ alloy is a modification of Haynes 625 alloy (see Alloy Digest Ni-354, January 1988) with tighter controls on chemistry and a finer grain size for fatigue resistance up to 680 deg C (1250 deg F). This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance as well as heat treating. Filing Code: Ni-612. Producer or source: Haynes International Inc.


Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


Sign in / Sign up

Export Citation Format

Share Document