Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas

2018 ◽  
Vol 160 ◽  
pp. 588-597 ◽  
Author(s):  
Xiaolong Yang ◽  
Aiqin Shen ◽  
Yinchuan Guo ◽  
Shengbo Zhou ◽  
Tianqin He
2014 ◽  
Vol 716-717 ◽  
pp. 307-309 ◽  
Author(s):  
Zhong Gen Liu ◽  
Fu Ming Xu ◽  
Guo Bin Cao

This paper analyzed for common diseases treatment methods for cement pavement in Jilin province seasonal freeze-thaw area, based on the analyses, disease prevention and repair methods have been put forward for water deposit, fracture, dislocation, potholes, arch, plate corner crack and uneven settlement, the research results have certain reference meanings for cement pavement maintenance.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2262 ◽  
Author(s):  
Tomasz Rudnicki ◽  
Robert Jurczak

This article presents the results of fatigue testing and assessment of the mechanical and physical properties of the concrete pavement of the A6 motorway, which was put in service in 1938. After 82 years of operation under heavy traffic loading conditions, the pavement was fully recycled by crushing of the existing concrete and reuse of the reclaimed material in the new courses of pavement placed as part of the motorway renewal project. The main objective of this research was to determine the properties of the tested concrete, including compressive strength, water absorption and freeze-thaw resistance after 150 cycles of alternate freezing and thawing. The resistance of the concrete to the action of de-icing products was also checked. The article also presents the results of petrographic analysis of the aggregates. Additionally, concrete sampled from the pavement was evaluated for freeze-thaw resistance in relation to the determined porosity characteristics. The tested concrete, which was subjected to over 80 years of traffic loading on the A6 motorway, was found to meet the highest requirements as currently applied for the extra heavy-duty pavements. With a compressive strength value in excess of 50 MPa, the tested concrete can be rated at least CC40, according to EN 13877-2:2013-08. The samples were found to satisfy the freeze-thaw resistance requirements of an F150 rating. The air void analysis showed that the analyzed concrete contained 1.6% of micropores, i.e., air voids smaller than 300 μm (A300). The spacing factor, in turn, was below 0.200 mm (L = 0.185 mm). The example of the A6 motorway renewal project served to demonstrate that reclaimed concrete aggregate, obtained by crushing the entire pavement, can be used for production of the new pavement courses.


Author(s):  
Carl N. Abou Sleiman ◽  
Xijun Shi ◽  
Dan G. Zollinger

For a concrete pavement, the permeation specifications for the surface have a crucial influence on its durability. In this accelerated laboratory research, a surface treatment that combines lithium silicate chemistry with a reactive silicon catalyst was tested to typify the product longevity under traffic and against salt scaling. River gravel and limestone aggregates were used in two different mixture designs. Abrasion testing was conducted according to ASTM standards in which mass loss was recorded at different time intervals. A modification was employed using a diluted deicer simulated by 4 wt.% CaCl2 solution during 15 cycles of freeze/thaw testing. A model was proposed to relate the abrasion efficiency against load cycles of a treated surface to represent the longevity of a concrete pavement. Based on the abrasion coefficient and the texture wavelength of the pavement, it is shown that the life cycle under abrasion of a concrete pavement can be modeled. During the experimental procedures, the untreated concrete specimens were used as the control sample. Results from the abrasion and freeze/thaw testing of treated specimens indicated a lower level of cumulative loss damage, which confirms the benefits of using such products to extend the service life of a concrete pavement surface. The results of modeling indicated an increase of 14% of the ultimate load application to failure for the treated specimens, which indicates an increase in longevity of the pavement. Moreover, when exposed to freeze/thaw cycles, a limestone concrete showed less damage compared with the river gravel concrete mixture.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shiping Zhang ◽  
Xiang Dong ◽  
Houxian Zhang ◽  
Min Deng

The cause for deterioration of the concrete structure located in severe environment has been explored both in field and in laboratory. Serious cracking and spalling appeared upon surface of the concrete structure soon after the structure was put into service. Both alkali-aggregate reaction and freeze-thaw cycles may result in similar macro visible cracking and spalling. The possibility of alkali-aggregate reaction was excluded by both field survey and lab examination such as chemical analysis, petrographic analysis, and determination of alkali reactivity of aggregates. According to results of freeze-thaw cycles, impermeability testing, and microstructure analysis, it is deduced that the severe environmental conditions plus the relatively inferior frost resistance cause the deterioration of concrete. Usage of air entraining admixture can improve frost resistance and impermeability. Furthermore, new approaches to mitigate the deterioration of concrete used in severe environmental condition are discussed.


Sign in / Sign up

Export Citation Format

Share Document