Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance

2018 ◽  
Vol 165 ◽  
pp. 655-662 ◽  
Author(s):  
Ali Amiri ◽  
Zeynep Başaran Bundur
2010 ◽  
Vol 16 (4) ◽  
pp. 319-327 ◽  
Author(s):  
M. Dilipkumar ◽  
M. Rajasimman ◽  
N. Rajamohan

Kluyveromyces marxianus var marxianus was found to secrete a large amount of extracellular inulinase in to the medium. The optimization of inulinase production using copra waste as carbon source was performed with statistical methodology based on experimental designs. The screening of eighteen nutrients for their influence on inulinase production was achieved using a Plackett-Burman design. Corn steep liquor, (NH4)2SO4, ZnSO4.7H2O, K2HPO4 and urea were selected based on their positive influence on inulinase production. The selected components were optimized using Response Surface Methodology (RSM). The optimum conditions are: corn steep liquor - 0.0560 (g/gds), (NH4)2SO4 - 0.0084 (g/gds), ZnSO4.7H2O - 0.0254 (g/gds), K2HPO4 - 0.0037 (g/gds) and urea - 0.02147 (g/gds). These conditions were validated experimentally which revealed an enhanced inulinase yield of 372 U/gds.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Pariya Shaigani ◽  
Dania Awad ◽  
Veronika Redai ◽  
Monika Fuchs ◽  
Martina Haack ◽  
...  

Abstract Background Oleaginous yeasts are promising microbial platforms for sustainable, bio-based production of biofuels and oleochemical building blocks. Bio-based residues provide sustainable and cost-effective carbon sources for fermentative yeast oil production without land-use change. Considering the regional abundancy of different waste streams, we chose complex biomass residue streams of marine origin; macroalgae hydrolysate, and terrestrial origin; wheat straw hydrolysate in the presence, and absence of corn steep liquor as a complex nitrogen source. We investigated the biomass and lipid yields of an array of well-described oleaginous yeasts; R. glutinis, T. asahii, R. mucilaginosa, R. toruloides, C. oleaginosus growing on these hydrolysates. Furthermore, their sugar utilization, fatty acid profile, and inhibitory effect of the hydrolysates on yeast growth were compared. For correlative reference, we initially performed comparative growth experiments for the strains on individual monomeric sugars separately. Each of these monomeric sugars was a dominant carbon source in the complex biomass hydrolysates evaluated in this study. In addition, we evaluated N-acetylglucosamine, the monomeric building block of chitin, as a low-cost nitrogen and carbon source in yeast fermentation. Results C. oleaginosus provided the highest biomass and lipid yields. In the wheat straw and brown algae hydrolysates, this yeast strain gained 7.5 g/L and 3.8 g/L lipids, respectively. Cultivation in algae hydrolysate resulted in a higher level of unsaturated fatty acids in the lipids accumulated by all yeast strains. R. toruloides and C. oleaginosus were able to effectively co-utilize mannitol, glucose, and xylose. Growth rates on wheat straw hydrolysate were enhanced in presence of corn steep liquor. Conclusions Among the yeast strains investigated in this study, C. oleaginosus proved to be the most versatile strain in terms of substrate utilization, productivity, and tolerance in the complex media. Various fatty acid profiles obtained on each substrate encourage the manipulation of culture conditions to achieve the desired fatty acid composition for each application. This could be accomplished by combining the element of carbon source with other formerly studied factors such as temperature and oxygen. Moreover, corn steep liquor showed promise for enhancement of growth in the oleaginous strains provided that carbon substrate is available.


2021 ◽  
Author(s):  
Alireza Habibi ◽  
Samira Fallahi ◽  
Saeed Abbasi ◽  
Rouhallah Sharifi

Abstract Application of agro-industrial waste in microbial fermentation is interesting in economic and environmental aspects. Carotenoids production by Rhodotorula toruloides KP324973 was investigated using corn steep liquor (CSL) as sole carbon source. Haldane model with constants µmax = 0.056 h-1, KS = 1.54 vv-1%, and KI = 58.58 vv-1% showed best describe of cell growth kinetics on CLS. A same maximum carotenoid production rate (Rp) about 2.23 μg gcell-1 h-1 was obtained at initial CSL concentration of 5 v/v% after 72 h and 21 h in batch cultivation in shaken flasks and bubble column reactor (BCR), respectively. Further improvement of carotenogenesis was followed by fed-batch cultivation in BCR where the optimal setting of factors at feed flow rate of 5 mL h-1, pH of 5.66, and temperature 14 ˚C gained a highest Rp = 8.686 μg gcell-1 h-1. Chromatographic analysis showed more than 94% of produced carotenes was β-carotene.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 491
Author(s):  
Kazuki Kano ◽  
Hiroaki Kitazawa ◽  
Keitaro Suzuki ◽  
Ani Widiastuti ◽  
Hiromitsu Odani ◽  
...  

Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with the same amount of total nitrogen in summer cultivation, there was no significant difference between yields; however, the growth rate in OF was slower than in CF. When OF was applied with twice the amount of nitrogen in CF (OF2), bok choy growth and yield were significantly inhibited in summer cultivation, likely owing to dissolved oxygen deficiency and different rates of nitrification and nitrogen absorbance by the plant root. Although the contents of potassium, calcium, and magnesium in bok choy showed no difference among the three treatments in both cultivation seasons, the carbon/nitrogen ratio tended to be higher in OF and OF2 than in CF. Lower nitric acid and higher ascorbic acid content was found in OF and OF2 than in CF. Overall, our results suggest that a comparable yield is expected by using the same nitrogen amount with a conventional recipe of chemical fertilization in autumn cultivation. However, further improvement of hydroponic management is needed in summer cultivation.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Genan Wang ◽  
Bingyi Shi ◽  
Pan Zhang ◽  
Tingbin Zhao ◽  
Haisong Yin ◽  
...  

Abstractβ-poly(l-malic acid) (PMLA) is a water-soluble biopolymer used in medicine, food, and other industries. However, the low level of PMLA biosynthesis in microorganisms limits its further application in the biotechnological industry. In this study, corn steep liquor (CSL), which processes high nutritional value and low-cost characteristics, was selected as a growth factor to increase the PMLA production in strain, Aureobasidium melanogenum, and its metabolomics change under the CSL addition was investigated. The results indicated that, with 3 g/L CSL, PMLA production, cell growth, and yield (Yp/x) were increased by 32.76%, 41.82%, and 47.43%, respectively. The intracellular metabolites of A. melanogenum, such as amino acids, organic acids, and key intermediates in the TCA cycle, increased after the addition of CSL, and the enrichment analysis showed that tyrosine may play a major role in the PMLA biosynthesis. The results presented in this study demonstrated that the addition of CSL would be an efficient approach to improve PMLA production.


2019 ◽  
Vol 16 ◽  
pp. 1692-1701
Author(s):  
Ponnaiah Paulraj ◽  
Harvie Anak Shukri ◽  
Vnootheni Nagiah ◽  
Nagaraja Suryadevara ◽  
Balavinayagamani Ganapathy

2021 ◽  
Vol 2 (2) ◽  
pp. 234-244
Author(s):  
Thomas P. West

This review examines the production of the microbial polysaccharide gellan, synthesized by Sphingomonas elodea, on dairy and plant-based processing coproducts. Gellan is a water-soluble gum that structurally exists as a tetrasaccharide comprised of 20% glucuronic acid, 60% glucose and 20% rhamnose, for which various food, non-food and biomedical applications have been reported. A number of carbon and nitrogen sources have been tested to determine whether they can support bacterial gellan production, with several studies attempting to optimize gellan production by varying the culture conditions. The genetics of the biosynthesis of gellan has been explored in a number of investigations and specific genes have been identified that encode the enzymes responsible for the synthesis of this polysaccharide. Genetic mutants exhibiting overproduction of gellan have also been identified and characterized. Several dairy and plant-based processing coproducts have been screened to learn whether they can support the production of gellan in an attempt to lower the cost of synthesizing the microbial polysaccharide. Of the processing coproducts explored, soluble starch as a carbon source supported the highest gellan production by S. elodea grown at 30 °C. The corn processing coproducts corn steep liquor or condensed distillers solubles appear to be effective nitrogen sources for gellan production. It was concluded that further research on producing gellan using a combination of processing coproducts could be an effective solution in lowering its overall production costs.


Sign in / Sign up

Export Citation Format

Share Document