Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering

2016 ◽  
Vol 212 ◽  
pp. 100-110 ◽  
Author(s):  
Daiana Wischral ◽  
Jianzhi Zhang ◽  
Chi Cheng ◽  
Meng Lin ◽  
Lucas Monteiro Galotti De Souza ◽  
...  
2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.


2021 ◽  
Author(s):  
Walter José Martinez-Burgos ◽  
Jair Rosário do Nascimento Junior ◽  
Adriane Bianchi Pedroni Medeiros ◽  
Leonardo Wedderhoff Herrmann ◽  
Eduardo Bittencourt Sydney ◽  
...  

Abstract The search for renewable and sustainable sources of energy has been one of the main goals of society in recent years, especially to reduce the environmental impacts of fossil fuels. One promising alternative is the production of hydrogen, which does not emit greenhouse gases and can be produced from agro-industrial wastes. The Clostridium genus is recorded as having high hydrogen yields compared to other genus, with several producing species. The objective of this work was to evaluate biohydrogen production potential of four agro-industrial residues, which were soft drink wastewater, corn steep liquor, cheese whey, and expired Guaraná soft drink, using one model strain Clostridium beijerinckii ATCC 8260 and newly isolated Clostridium butyricum DEBB-B348. The agro-industrial wastes were characterised in terms of monosaccharide, organic acid, amino acid, cation, and anion concentrations and compared to the literature. After performing subsequent experimental designs, the significant factors were cheese whey concentration, corn steep liquor concentration, and fermentation time for C. beijerinckii, and corn steep liquor concentration and fermentation time for C. butyricum (p ≤ 0.05), with an R2 of 0.950 and 0.895, respectively. The maximum hydrogen volume production was 18.5 ± 1.68 mL and 27.4 ± 1.84 mL for each strain, respectively. The C. butyricum 16s rRNA gene phylogenetic tree and the carbohydrate, organic acid, and amino acid kinetics of the optimum medium are also presented. These results indicate a potential hydrogen production process utilising less expensive substrates, proposing more proper disposal for agro-industrial wastes and using an isolated strain with high yield.


2020 ◽  
Vol 10 (3) ◽  
pp. 5348-5354

This work aim the carotenoid bioproduction by the yeast Phaffia rhodozyma Y-17268 in a fed-batch bioreactor with different low-cost agroindustrial substrates (crude glycerol, corn steep liquor, and rice parboiling water). The maximum concentration of total carotenoid and cell productivity were 4118 µg/L (835 µg/g) and 0.05 g/L. h, respectively, with a feed volume of 75 mL every 12 h. The medium were composed of 100 g/L crude glycerol, 100 g/L corn steep liquor, and 20 g/L rice parboiling water at 25ºC, pHinitial 4.0, agitation rate of 250 rpm, aeration rate of 1.5 vvm and 96 h of bioproduction. 0.188 h-1 of maximum specific growth speeds (μmax) was obtained for the major carotenoid - (all-E)-β-carotene (75.9%). Thus, the yeast P. rhodozyma produced in a fed-batch bioreactor demonstrated a great potential to produce the β-carotene.


2002 ◽  
Vol 68 (3) ◽  
pp. 1071-1081 ◽  
Author(s):  
S. A. Underwood ◽  
M. L. Buszko ◽  
K. T. Shanmugam ◽  
L. O. Ingram

ABSTRACT Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD+. Expression of low-Km Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.


2021 ◽  
Vol 320 ◽  
pp. 124370
Author(s):  
Walter José Martinez-Burgos ◽  
Eduardo Bittencourt Sydney ◽  
Dieggo Rodrigues de Paula ◽  
Adriane Bianchi Pedroni Medeiros ◽  
Júlio Cesar de Carvalho ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 491
Author(s):  
Kazuki Kano ◽  
Hiroaki Kitazawa ◽  
Keitaro Suzuki ◽  
Ani Widiastuti ◽  
Hiromitsu Odani ◽  
...  

Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with the same amount of total nitrogen in summer cultivation, there was no significant difference between yields; however, the growth rate in OF was slower than in CF. When OF was applied with twice the amount of nitrogen in CF (OF2), bok choy growth and yield were significantly inhibited in summer cultivation, likely owing to dissolved oxygen deficiency and different rates of nitrification and nitrogen absorbance by the plant root. Although the contents of potassium, calcium, and magnesium in bok choy showed no difference among the three treatments in both cultivation seasons, the carbon/nitrogen ratio tended to be higher in OF and OF2 than in CF. Lower nitric acid and higher ascorbic acid content was found in OF and OF2 than in CF. Overall, our results suggest that a comparable yield is expected by using the same nitrogen amount with a conventional recipe of chemical fertilization in autumn cultivation. However, further improvement of hydroponic management is needed in summer cultivation.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Genan Wang ◽  
Bingyi Shi ◽  
Pan Zhang ◽  
Tingbin Zhao ◽  
Haisong Yin ◽  
...  

Abstractβ-poly(l-malic acid) (PMLA) is a water-soluble biopolymer used in medicine, food, and other industries. However, the low level of PMLA biosynthesis in microorganisms limits its further application in the biotechnological industry. In this study, corn steep liquor (CSL), which processes high nutritional value and low-cost characteristics, was selected as a growth factor to increase the PMLA production in strain, Aureobasidium melanogenum, and its metabolomics change under the CSL addition was investigated. The results indicated that, with 3 g/L CSL, PMLA production, cell growth, and yield (Yp/x) were increased by 32.76%, 41.82%, and 47.43%, respectively. The intracellular metabolites of A. melanogenum, such as amino acids, organic acids, and key intermediates in the TCA cycle, increased after the addition of CSL, and the enrichment analysis showed that tyrosine may play a major role in the PMLA biosynthesis. The results presented in this study demonstrated that the addition of CSL would be an efficient approach to improve PMLA production.


2021 ◽  
Vol 2 (2) ◽  
pp. 234-244
Author(s):  
Thomas P. West

This review examines the production of the microbial polysaccharide gellan, synthesized by Sphingomonas elodea, on dairy and plant-based processing coproducts. Gellan is a water-soluble gum that structurally exists as a tetrasaccharide comprised of 20% glucuronic acid, 60% glucose and 20% rhamnose, for which various food, non-food and biomedical applications have been reported. A number of carbon and nitrogen sources have been tested to determine whether they can support bacterial gellan production, with several studies attempting to optimize gellan production by varying the culture conditions. The genetics of the biosynthesis of gellan has been explored in a number of investigations and specific genes have been identified that encode the enzymes responsible for the synthesis of this polysaccharide. Genetic mutants exhibiting overproduction of gellan have also been identified and characterized. Several dairy and plant-based processing coproducts have been screened to learn whether they can support the production of gellan in an attempt to lower the cost of synthesizing the microbial polysaccharide. Of the processing coproducts explored, soluble starch as a carbon source supported the highest gellan production by S. elodea grown at 30 °C. The corn processing coproducts corn steep liquor or condensed distillers solubles appear to be effective nitrogen sources for gellan production. It was concluded that further research on producing gellan using a combination of processing coproducts could be an effective solution in lowering its overall production costs.


Sign in / Sign up

Export Citation Format

Share Document