Performance of self-compacting concrete comprising granite cutting waste as fine aggregate

2019 ◽  
Vol 221 ◽  
pp. 539-552 ◽  
Author(s):  
Abhishek Jain ◽  
Rajesh Gupta ◽  
Sandeep Chaudhary
2021 ◽  
Vol 894 ◽  
pp. 95-101
Author(s):  
Sepehr Ghafari ◽  
Fereidoon Moghadas Nejad ◽  
Ofelia Corbu

In this research, a sustainable approach is followed to develop efficient mixtures incorporating recycled fine aggregate (RFA) remained from structure demolition as well as limestone filler (LF) from production of hot mix asphalt (HMA). The LF is a byproduct of the drying process in HMA production plant which is not entirely consumed in the production of the HMA and must be hauled and disposed in landfills. The maximum particle size of the LF is approximately 40 µm. Self-Compacting Concrete (SCC) mixtures were designed replacing 5% and 10% of the cement with LF. Incorporation of 50%, and 100% RFA with the fines in the mixtures were considered with and without addition of the LF. Due to the formwork and prefabrication restrictions, the paste volume and the high range water reducer content were tuned in such a way that the slump flow of the mixtures remained between 660 mm to 700 mm without segregation. Durability and mechanical performance of the mixtures were evaluated by resistance against freeze-thaw scaling exposed to deicing agents and compressive strength. It was observed that the SCC mixtures containing 10% LF outperformed those without the use of LF while 5% SCC mixtures did not exhibit tangible superiority. Incorporation of RFA as the fine fraction degraded the durability of all the mixtures. While replacing all the fine fraction with RFA significantly impaired durability and compressive strength, 50% RF mixtures could be designed containing 10% LF that remained in the allowable limits.


2019 ◽  
Vol 1386 ◽  
pp. 012032
Author(s):  
M F Mantilla Díaz ◽  
J A Villamizar Pabón ◽  
S Ruiz Martínez ◽  
L E Zapata Orduz

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2018 ◽  
Vol 877 ◽  
pp. 248-253
Author(s):  
Thete Swapnil Tanajirao ◽  
D. Arpitha ◽  
Suman Saha ◽  
C. Rajasekaran

Large quantity of the quarry dust gets produced annually in the quarries during the extraction of the crushed coarse aggregate. As a result, disposal problems of this material gain significant momentum as these disturb environmental systems also. Now-a-days many of the countries like India is facing problems of ban on the extraction of sand and lacunae in procuring of fine aggregate, which is important constituent of the concrete. To overcome this problem, present study is focused on the suitability to utilize the quarry dust in Self Compacting Concrete (SCC) partially as fine aggregate with the natural fine aggregates. In this work, quarry dust is used as replacement of sand in a different level (0%, 15%, 30%, 45% and 60%) for producing the SCC. Fresh properties such as slump flow and V-funnel time have been measured for all mixes and hardened properties as compressive strength, splitting tensile strength and flexural strength of the concrete have been checked for all the mixes and it has been found that optimum utilization of quarry dust up to 30% can been done to produce SCC without compromising with its properties.


2013 ◽  
Vol 857 ◽  
pp. 10-19
Author(s):  
Ji Liang Wang ◽  
Xiang Qian Wen ◽  
Jun Hong Shan ◽  
Ying Liu

the influence of mixing amount of mineral admixture, volume content of fine and coarse aggregate have been systematical studied on the workability, mechanical properties and volume stability of self-compacting concrete. Test results showed that with the fly ash content increased, the workability of self-compacting concrete improved significantly, early compressive strength decreased, but increase rate of later strength improved remarkably, and the mixing amount of fly ash inhibited significantly the dry shrinkage of self-compacting concrete; with the volume content of coarse aggregate increased, the workability of self-compacting concrete decreased significantly, but the volume stability of self-compacting concrete improved obviously, thus the optimum volume content of coarse aggregate of self-compacting concrete was range from 0.30 to 0.34; when the volume content of fine aggregate varied at the range of 0.40~0.50, there may be little effects on the workability of self-compacting concrete, but the increase self-compacting concretes volume content could reduce obviously the dry shrinkage of self-compacting concrete. Moreover, the variation in the volume content of coarse and fine aggregate should have slight influence on the early strength of self-compacting concrete, and the influence of the volume content variety on the later strength of self-compacting concrete could be neglected eventually.


2016 ◽  
Vol 692 ◽  
pp. 94-103
Author(s):  
S.S. Samantaray ◽  
K.C. Panda ◽  
M. Mishra

Rice husk ash (RHA) is a by-product of the rice milling industry. Near about 20 million tonnes of RHA is produced annually which creates environmental pollution. Utilization of RHA as a supplementary cementitious material adds sustainability to concrete by reducing CO2 emission of cement production. But, the percentage of utilization of RHA is very less. This paper presents the results of an experimental investigation to study the effects of partial replacement of fine aggregate with RHA on mechanical properties of conventional and self-compacting concrete (SCC). The fine aggregate is replaced by RHA in conventional concrete (CC) with six different percentage by weight such as 0%, 10%, 20%, 30%, 40% and 50% having w/c ratio 0.375 with variation of super plasticiser dose, whereas in SCC the replacement of fine aggregate by RHA is 0%, 10%, 20%, 30%, 40%. The design mix for CC is targeted for M30 grade concrete. The fresh concrete test of SCC is conducted by using slump flow, T500, J-ring, L-box, U-box and V-funnel to know the filling ability, flow ability and passing ability of SCC. As fresh concrete property concerned, the result indicates that the slump flow value satisfied the EFNARC 2005 guidelines upto 30% replacement of fine aggregate with RHA whereas 40% replacement did not satisfy the guideline. As hardened concrete property concerned, the compressive strength, split-tensile strength and flexural strength of CC and SCC are determined at 7, 28 and 90 days. The test result indicates that upto 30% replacement of fine aggregate with RHA enhances the strength in CC whereas the strength enhancement in SCC upto 20% replacement.


Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


Sign in / Sign up

Export Citation Format

Share Document