Study on the Influence of Mix Design Parameters on the Properties of Self-Compacting Concrete

2013 ◽  
Vol 857 ◽  
pp. 10-19
Author(s):  
Ji Liang Wang ◽  
Xiang Qian Wen ◽  
Jun Hong Shan ◽  
Ying Liu

the influence of mixing amount of mineral admixture, volume content of fine and coarse aggregate have been systematical studied on the workability, mechanical properties and volume stability of self-compacting concrete. Test results showed that with the fly ash content increased, the workability of self-compacting concrete improved significantly, early compressive strength decreased, but increase rate of later strength improved remarkably, and the mixing amount of fly ash inhibited significantly the dry shrinkage of self-compacting concrete; with the volume content of coarse aggregate increased, the workability of self-compacting concrete decreased significantly, but the volume stability of self-compacting concrete improved obviously, thus the optimum volume content of coarse aggregate of self-compacting concrete was range from 0.30 to 0.34; when the volume content of fine aggregate varied at the range of 0.40~0.50, there may be little effects on the workability of self-compacting concrete, but the increase self-compacting concretes volume content could reduce obviously the dry shrinkage of self-compacting concrete. Moreover, the variation in the volume content of coarse and fine aggregate should have slight influence on the early strength of self-compacting concrete, and the influence of the volume content variety on the later strength of self-compacting concrete could be neglected eventually.

2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


2018 ◽  
Vol 12 (1) ◽  
pp. 1-8
Author(s):  
J. Bright Brabin Winsley ◽  
M. Muthukannan

Background and Objective: The demand for course aggregate is increasing every day. Natural aggregate used for ordinary concrete is obtained by quarrying, which cause serious environmental issues. An alternate course aggregate is needed for sustainable development. The objective of this research is to produce an alternative course aggregate in combination with soil available locally near site along with fly ash, to test its properties to make it fit for concrete. Method: An alternative coarse aggregate is produced from red soil and fly ash mixed at various ratios, 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, fresh aggregate granules of different sizes less than 10mm is prepared using hand press, the aggregates were sundried in shade for 24hours, oven dried at 110°C, burned in Muffle furnace at temperature of 950°C and cooled gradually to reach room temperature. After the production, the specific gravity, bulk density, water absorption, Impact and aggregate crushing of the aggregates were tested. Result: Test results showed that aggregates produced are of lesser specific gravity, density with relatively appreciable impact value and crushing value. Conclusion: The test results show that the aggregates produced can be used in construction as replacement for natural aggregates.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 1
Author(s):  
T. V. Arul Prakash ◽  
Dr. M. Natarajan ◽  
Dr. T. Senthil Vadivel ◽  
K. Vivek

This article presents the influence of the Recycled Concrete Aggregate (RCA) on the mechanical properties of self-compacting fly ash concrete (M30 Grade). The RCA from local construction demolition site were employed as a replacement for natural coarse aggregate (0% - 30%) in self-compacting concrete (SCC). The Viscosity modifying material used in this study was Class F fly ash. The results indicate that recycled concrete aggregate can be replaced by an optimal 25% replacement percentage in the manufacture of SCC without significantly affecting strength and durability.  


2018 ◽  
Vol 877 ◽  
pp. 248-253
Author(s):  
Thete Swapnil Tanajirao ◽  
D. Arpitha ◽  
Suman Saha ◽  
C. Rajasekaran

Large quantity of the quarry dust gets produced annually in the quarries during the extraction of the crushed coarse aggregate. As a result, disposal problems of this material gain significant momentum as these disturb environmental systems also. Now-a-days many of the countries like India is facing problems of ban on the extraction of sand and lacunae in procuring of fine aggregate, which is important constituent of the concrete. To overcome this problem, present study is focused on the suitability to utilize the quarry dust in Self Compacting Concrete (SCC) partially as fine aggregate with the natural fine aggregates. In this work, quarry dust is used as replacement of sand in a different level (0%, 15%, 30%, 45% and 60%) for producing the SCC. Fresh properties such as slump flow and V-funnel time have been measured for all mixes and hardened properties as compressive strength, splitting tensile strength and flexural strength of the concrete have been checked for all the mixes and it has been found that optimum utilization of quarry dust up to 30% can been done to produce SCC without compromising with its properties.


2014 ◽  
Vol 554 ◽  
pp. 111-115 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md. Nor Hasanan ◽  
P.J. Ramadhansyah

The objective of the study is to investigate the potential of using Porous Concrete Paving Blocks (PCPB) as a part of paving surface. Laboratory tests were conducted to compare and examine the effect of particle sizes of coarse aggregate. Two coarse aggregate sizes were selected; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. The fine aggregate was eliminated from mixes. The water to cement ratio used was 0.35. Compressive strength and skid resistance tests were performed to evaluate the properties of PCPB. The test results indicated that there was a reduction in the strength when coarse aggregate at different size was used. Scanning electron microscopy showed that voids, poor bonding and lack of adhesion at the boundaries of the aggregate with cement paste contributing to the low PCPB strength. However, both PCPB specimens provide 30 % to 40 % increase in skid resistance compared to Concrete Paving Blocks (CPB).


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


This article mainly focused on the influence of recycle coarse aggregate and manufactured sand on the properties of self compacting concrete (SCC). The main purpose of this research is reuse of recycled aggregate in SCC and also to reduce use of fine aggregate by replacing manufactured sand. The SCC mixtures were prepared with 0, 25, 50, 75 and 100% replacement of recycle coarse aggregate in natural coarse aggregate and M-Sand in fine aggregate with a Water/Binder ratio of 0.36. Different test covering fresh properties of these SCC mixtures were executed the results were compared with EFNARC guidelines and IS 10262:2019. The feasibility of utilizing recycled aggregate and M-Sand in self compacting concrete has been examined and found that it is suitable for concrete.


2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


Sign in / Sign up

Export Citation Format

Share Document