Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age

2020 ◽  
Vol 252 ◽  
pp. 119027 ◽  
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee
Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3644 ◽  
Author(s):  
An Thao Huynh ◽  
Bryan Magee ◽  
David Woodward

This article considers semi-flexible composite (SFC) pavement materials made with reclaimed asphalt planings (RAP) and geopolymer cement-based grouts. Geopolymer grouts were developed and used to fill the internal void structure of coarse RAP skeletons with varying levels of porosity. The geopolymer grouts were formulated at ambient temperature using industrial by-products to offer economic and environmental savings relative to conventional Portland cement-based grouting systems. They were characterised on flowability, setting time, and compressive strength. The effect of grout and RAP on SFC material performance was evaluated using permeable porosity, compressive strength, and ultrasonic pulse velocity. SFC performance was significantly influenced by both grout type and RAP content. Improved performance was associated with mixtures of high-flowability/high-strength grout and low RAP content. A practical limitation was identified for combination of grout with low-flowability/fast-setting time and well-compacted RAP skeletons. Solids content exceeding 49% by volume was not feasible, owing to inadequate grout penetration. A suite of SFC materials was produced offering performance levels for a range of practical pavement applications. Preliminary relationships enabling prediction of SFC elastic modulus based on strength and/or ultrasonic pulse velocity test data are given. A pavement design is given using SFC as a sub-base layer for an industrial hardstanding.


2007 ◽  
Vol 34 (5) ◽  
pp. 682-685 ◽  
Author(s):  
D K Panesar ◽  
S E Chidiac

This study evaluates the potential use of ultrasonic pulse velocity (UPV) for determining the early age compressive strength of dry-cast concrete containing varying percentages of ground granulated blast-furnace slag (GGBFS). The proposed approach includes computing the dynamic elastic modulus from UPV measurements, evaluating the static elastic modulus from experimentally measured dynamic-to-static elastic modulus ratios, and determining the compressive strength from the static elastic modulus using formulae suggested in ACI-363. The early age strengths of dry-cast concrete containing varying amount of GGBFS, which are determined using UPV measurements, are in good agreement with the measured strength. The evaluation is also extended to include five datasets reported in published literature for concrete containing varying types and amounts of mineral admixtures. Key words: concrete, compressive strength, dry cast, early age properties, ground granulated blast-furnace slag (GGBFS), ultrasonic pulse velocity (UPV).


2021 ◽  
Vol 71 (343) ◽  
pp. e257
Author(s):  
D. Castillo ◽  
S. Hedjazi

Due to the increasing use of rapid construction methods and the challenges of maintaining construction schedules, a growing demand exists for procedures that can assure quality of work without sacrificing the pace of construction. The quality control of construction materials specifically, the mechanical properties of concrete are among the most important concerns in today’s construction industry. In the present study, the correlation between fiber-reinforced concrete’s compressive strength and dynamic modulus to its ultrasonic pulse velocity is investigated at early ages up to 7 days after mixing. An experimental program involving 189 FRC specimens were designed containing different types of structural fibers, fiber volume fractions, and water-to-cement ratios. Mathematical equations were developed to predict the early-age compressive strength and dynamic modulus of four different types of fiber-reinforced concrete based on ultrasonic pulse velocity. The predicted compressive strength and dynamic modulus from the proposed equations showed good agreement with the measured ones.


2011 ◽  
Vol 367 ◽  
pp. 581-587 ◽  
Author(s):  
E.O. Eze

Three rocks - biotite granite, dolerite, and marble - were studied for the use of ultrasonic pulse velocity in predicting their uniaxial compressive strength. The rocks differed in mineralogy, texture, and strength. The mineralogy and texture influence to varying degree the strength and the pulse velocity. Correlations between the compressive strength and the sonic velocity were highest in the marble (0.94-0.97), and lowest in the granite (0.68). The low correlation in the granite was attributed to the different mineral contents, the presence of biotite, the complexity in the grain boundary shape and the tortuosity of the wave path through the rock. The use of acoustic impedance and stiffness constant improved the strength of correlation in the marble but not in the dolerite and granite.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


Sign in / Sign up

Export Citation Format

Share Document