Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber

2021 ◽  
Vol 284 ◽  
pp. 122749
Author(s):  
G. Murali ◽  
Sallal R. Abid ◽  
K. Karthikeyan ◽  
M.K. Haridharan ◽  
Mugahed Amran ◽  
...  
2019 ◽  
Vol 84 ◽  
pp. 995-1010 ◽  
Author(s):  
Lijun Li ◽  
Lingyu Sun ◽  
Taikun Wang ◽  
Ning Kang ◽  
Wan Cao

2020 ◽  
pp. 002199832096155
Author(s):  
Mustafa Taşyürek ◽  
Memduh Kara

The aim of this study is to investigate the low velocity impact behavior of pre-stressed glass fiber/epoxy (GRP) nanocomposite tubes. During the production of filament wound tubes with a winding angle of ±55°, carbon nanotubes (CNT) were introduced to the epoxy resin at 0.5%wt and 1.0%wt by ultrasonic method. The nanocomposite tubes were pre-stressed to 32 bars internal pressure, one of the specified operating pressures according to ANSI/AWWA C950 standards. Low velocity impact tests were performed on the pure and CNT added pre-stressed GRP tubes at 5, 10 and 15 Joule energy levels. As a result of the experiments, the contact force-time, force-displacement graphs and absorbed energy values by the samples were obtained. In addition, the damage zones on the specimens were investigated. The effects of CNT reinforcements on the impact response and damage mechanisms of the specimens were evaluated. By adding CNT, it was observed that the damage areas of the samples decreased and was found to affect the impact response of nanocomposite tubes.


1991 ◽  
Vol 113 (3) ◽  
pp. 182-188 ◽  
Author(s):  
S. S. Pang ◽  
A. A. Kailasam

The objective of this study was to gain a better understanding of the low-velocity impact phenomena of composite pipe. The focus was on test method development, and material and damage characterization. A drop weight tower tester was designed in this investigation. The dynamic tests were conducted using three different impactor geometries, velocities, and masses. It was found that the damage was localized and on the outer surface of the pipe in the case of the conical and wedge tip impactors. On the other hand, the damage zone was larger than the impact zone for the hemispherical impactor, and cracks were first seen within the inner surface of the pipe. This implies that the hemispherical tip impactor caused more damage to the pipe than the conical or wedge tips. The energy absorbed slightly increased with an increase in velocity or in mass. The contact period for the conical impactor was the longest. The velocity and mass of the impactor had only a slight effect on that period. The wedge impactor generated the largest peak force. The energy absorbed by the two composite pipes under low-velocity impact was studied. The specimen-1, Derakane 411-45 resin with less glass fiber, seemed to absorb more energy compared to the specimen-2, Derakane 470-36 resin with more glass fiber. In addition, the specimen-2 exhibited a slightly higher maximum impact force. Therefore, impact response is sensitive to fiber content.


2018 ◽  
Vol 53 (1) ◽  
pp. 3-17 ◽  
Author(s):  
J Jefferson Andrew ◽  
Sivakumar M Srinivasan ◽  
A Arockiarajan

This paper aims to investigate the effect of homogenous and hybrid external patches based on plain weave woven glass and Kevlar fabric on low velocity impact and quasi-static tensile after impact response of adhesively bonded external patch repairs in damaged glass/epoxy composite laminates. In all hybrid patches, the proportion of Kevlar and glass fibers were equal (i.e. 50% of Kevlar and 50% of glass by volume fraction), while lay-up configuration was different. This further enables to study the associated effect of hybridization and lay-up configuration on impact response of the repaired laminates. The intent of using hybrid external patches is to combine the excellent high displacement-to-failure property of Kevlar fiber as a ductile reinforcement with the superior mechanical property of glass fiber as a brittle reinforcement. The effect of glass/Kevlar content on impact response and tensile after impact response was investigated for various incident impact energy levels, such as 2, 4, 6, and 8 J. Results showed that hybridization and lay-up configurations of the external patches played a significant role on low velocity impact and quasi-static tensile after impact response of the repaired glass/epoxy specimens. Specimens repaired using intra-ply hybrid patches showed better impact properties and damage tolerance capability than that of the virgin and other repaired specimens. In specific, the use of intra-ply hybrid patches reduced the impact energy absorption by 10.17% in comparison to the virgin specimens at impact energy of 8 J.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


Sign in / Sign up

Export Citation Format

Share Document