Correlation between rheological tests on bitumen and asphalt low temperature cracking tests

2022 ◽  
Vol 320 ◽  
pp. 126109
Author(s):  
Muhammad Aakif Ishaq ◽  
Filippo Giustozzi
Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2548 ◽  
Author(s):  
Yanhai Yang ◽  
Ye Yang ◽  
Baitong Qian

Cold recycled mixes using asphalt emulsion (CRME) is an economical and environmentally-friendly technology for asphalt pavement maintenance and rehabilitation. In order to determine the optimum range of cement contents, the complex interaction between cement and asphalt emulsion and the effects of cement on performance of CRME were investigated with different contents of cement. The microstructure and chemical composition of the fracture surface of CRME with different contents of cement were analyzed in this paper as well. Results show that the high-temperature stability and moisture susceptibility of CRME increased with the contents of cement increasing. The low-temperature crack resistance ability gradually increased when the content of cement is increased from 0% to 1.5%. However, it gradually decreased when the content of cement is increased from 1.5% to 4%. Cold recycled mixes had better low-temperature cracking resistance when the contents of cement were in the range from 1% to 2%. The results of microstructure and energy spectrum analysis show that the composite structure is formed by hydration products and asphalt emulsion. The study will be significant to better know the effects of cement and promote the development of CRME.


1998 ◽  
Vol 1629 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Manuel Ayres ◽  
Matthew W. Witczak

A new rational mechanistic model for analysis and design of flexible pavement systems has been developed. Furthermore, a fundamental probabilistic approach was incorporated into this system to account for the uncertainty of material and environmental conditions. The system was integrated in a user-friendly Windows program with a variety of user-selected options that include widely used models and those recently developed in the Strategic Highway Research Program project. Three basic types of distress can be investigated separately or all together, including fatigue cracking, permanent deformation, and low-temperature cracking. The mechanistic approach makes use of the JULEA layered elastic analysis program to obtain pavement response. The system provides optional deterministic and probabilistic solutions, accounts for aging and temperature effects over the asphalt materials, variable interface friction, multiple wheel loads, and user-selected locations for analysis. Tabular and graphical results provide expected distress values for each month as well as their variability, probability of failure, and assessment of the overall reliability of the pavement relative to each type of distress for a user-selected failure criterion. Only the load-associated module of AYMA is presented; a separate work describes the low-temperature cracking analysis.


Author(s):  
N. Tapsoba ◽  
C. Sauzéat ◽  
H. Benedetto ◽  
H. Baaj ◽  
M. Ech

2019 ◽  
Vol 11 ◽  
pp. e00238 ◽  
Author(s):  
B.B. Teltayev ◽  
C.O. Rossi ◽  
G.G. Izmailova ◽  
E.D. Amirbayev ◽  
A.O. Elshibayev

Sign in / Sign up

Export Citation Format

Share Document