Pit to crack transition in stress corrosion cracking of a steam turbine disc steel

2004 ◽  
Vol 46 (5) ◽  
pp. 1239-1264 ◽  
Author(s):  
A Turnbull ◽  
S Zhou
1972 ◽  
Vol 186 (1) ◽  
pp. 341-377 ◽  
Author(s):  
D. Kalderon

The catastrophic failure of Hinkley Point ‘A’ unit No. 5 in September 1969 was the result of spontaneous brittle fracture of a shrunk-on ***l.p. turbine disc, initiated by stress-corrosion cracking in the crown of a keyway in the disc bore. Stress corrosion cracking of disc bores and keyways was also found on a number of other discs. The discs were made of 3 Cr-Mo steel and complied with normal acceptance standards, but due to temper embrittlement, their fracture toughness was low, and cracks only about 1/16 in deep in the concentrated stress field at the keyway crown were large enough to initiate brittle fracture. Investigation of the cause of the stress-corrosion cracking is being separately reported.


CORROSION ◽  
10.5006/3492 ◽  
2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Zeynab Shirband ◽  
Jing-Li Luo ◽  
Reginald Eadie ◽  
Weixing Chen

Hydrostatic testing, or hydrotesting, has been widely used as a stress corrosion cracking management method in the pipeline industry, particularly in gas pipelines. Although the technique has been very useful in the prevention of operational failures, it is known that these high pressures can produce significant plastic deformation around stress concentrators, such as pits and other surface flaws, that might be present. This plasticity can temporarily retard long, well-developed cracks; however, the effect of this plasticity on growth of very small cracks has not previously been studied. In this work, a long-term test was conducted to simulate real pipeline pressure cycling conditions by the application of occasional hydrotesting loads on steel samples. Crack initiations from pits were compared between specimens undergoing no hydrotesting load (control specimens) and those that underwent three hydrotest cycles during the test. The results showed that pit-to-crack transition was enhanced by the application of three hydrotesting loads. Seventy percent more cracks were found to have grown beyond ferrite grain boundaries in the hydrotested specimens. This initial study indicated substantial differences between small crack formation with and without hydrotesting. These differences predict significantly higher short crack growth in the hydrotested samples. Further study is necessary to further delineate these effects.


2019 ◽  
Vol 795 ◽  
pp. 102-108 ◽  
Author(s):  
Shu Xian Lin ◽  
Yu Hui Huang ◽  
Fu Zhen Xuan ◽  
Shan Tung Tu

The stress corrosion sensitivities of 25Cr2Ni2MoV, 26NiCrMoV10-10 and 30Cr2Ni4MoV low-pressure rotor steels in simulated nuclear steam turbine operation condition were investigated by slow strain rate test (SSRT), and the stress corrosion cracking (SCC) mechanisms were studied by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Results revealed that the SCC sensitivity of 25Cr2Ni2MoV steel was highest in 3.5wt.%NaCl solution at 180°C, while the SCC sensitivity of 26NiCrMoV10-10 steel and 30Cr2Ni4MoV steel are similar. The SCC sensitivity of CrNiMoV steam turbine rotor steels could be decreased by the increase of Ni element and the decline of mechanical intensity. Cracks initiate from metal surface and then propagate to the inner metal, which showed a form of transgranular cracking.


Author(s):  
Vamadevan Gowreesan ◽  
Kirill Grebinnyk

Stress corrosion cracking in steam turbines had been an old problem though some modern steam turbines have almost eliminated this problem by several methods. The methods include design modification to reduce the stress levels below the threshold stress level for stress corrosion cracking, inducing compressive stress by different means and using pure steam [1, 2]. Some of the older steam turbine discs are prone to stress corrosion cracking. Two cases where such machines experienced stress corrosion cracking in their discs are discussed here. The row 6 disc of an integral steam turbine rotor developed cracks in the root sections. Some of the cracks were mechanically opened for the evaluation. Evaluation of the fracture surfaces with a scanning electron microscope showed evidence of intergranular mode of cracking. Optical microscopy of a cracked root confirmed intergranular mode of cracking. In addition, it showed branching of cracks. Based on these findings, it was concluded that stress corrosion cracking was the reason for the cracks. In addition, finite element analysis was used to calculate the stress distribution in the blade root of the disc. The location of the maximum equivalent stress coincided perfectly with that of the actual crack location in the disc root section. Unfortunately, redesign of the root geometry to minimize the local stress concentration is very difficult due to the size limitation of the blade roots. Small amount of chlorine was identified on the fracture surface and the chlorine could have come from the steam used. The customer was advised to analyze their steam quality and to improve the quality of the steam if needed. The cracked portion was removed from the disc and weld-build up to machine new root sections with the same type of roots. Root section of the row 6 disc of another steam turbine developed failure. This disc had radial entry type blades. Portion of the disc root and some blades were liberated from the disc due to the cracking. The fracture surface had heavy oxide layer on it. Evaluation of the fracture surface with a scanning electron microscope revealed intergranular mode of failure. Energy dispersive spectroscopy analysis of the fracture surface found oxides on the fracture surface. Optical microscopy showed secondary cracking and branched cracking. All these evidences confirmed that the failure occurred due to stress corrosion cracking. In addition, it was suspected that forging was not heat treated properly due to measured lower toughness and different microstructure. The lower toughness was believed to be a result of improper heat treatment rather than that of embrittlement. Methods to mitigate the risk of stress corrosion cracking were proposed.


Author(s):  
Gang Chen ◽  
Puning Jiang ◽  
Xingzhu Ye ◽  
Junhui Zhang ◽  
Yifeng Hu ◽  
...  

Although stress corrosion cracking (SCC) and corrosion fatigue cracking can occur in many locations of nuclear steam turbines, most of them initiate at low pressure disc rim, rotor groove and keyway of the shrunk-on disc. For nuclear steam turbine components, long life endurance and high availability are very important factors in the operation. Usually nuclear power plants operating more than sixty years are susceptible to this failure mechanism. If SCC or corrosion fatigue happens, especially in rotor groove or keyway, it has a major influence on nuclear steam turbine life. In this paper, established methods for the SCC and corrosion fatigue-controlled life prediction of steam turbine components were applied to evaluating a new shrunk-on disc that had suffered local keyway surface damage during manufacture and loss of residual compressive stress.


1997 ◽  
Vol 119 (4) ◽  
pp. 393-400 ◽  
Author(s):  
C. Liu ◽  
D. D. Macdonald

Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power-generating facilities and typically result in more than 50 percent of the unscheduled outages. In this paper, we describe a deterministic method for predicting localized corrosion damage in low-pressure steam turbine disks downstream of the Wilson line, where a condensed, thin electrolyte layer exists on the steel disk surfaces. Our calculations show that the initiation and propagation of stress corrosion cracking (SCC) is not very sensitive to the oxygen content of the steam, but is sensitive to the conductivity of the condensed liquid layer and the stresses (residual and operational) that the disk experiences in service.


Sign in / Sign up

Export Citation Format

Share Document