Influence of the grain orientation spread on the pitting corrosion resistance of duplex stainless steels using electron backscatter diffraction and critical pitting temperature test at the microscale

2013 ◽  
Vol 68 ◽  
pp. 275-278 ◽  
Author(s):  
V. Vignal ◽  
D. Ba ◽  
H. Zhang ◽  
F. Herbst ◽  
S. Le Manchet
2013 ◽  
Vol 46 (2) ◽  
pp. 483-492 ◽  
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix ◽  
Sebastian Wronski

The main aim of the present work is to study the relation between microstructural features – such as local misorientations, grain orientation gradients and grain boundary structures – and thermomechanical treatment of hexagonal zirconium (Zr702α). Electron backscatter diffraction (EBSD) topological maps are used to analyze the aforementioned material parameters at the early stages of plastic deformation imposed by channel-die compression, as well as at a partial recrystallization state achieved by brief annealing. The evolution of local misorientations and orientation gradients is investigated using the so-called kernel average misorientation (KAM) and grain orientation spread (GOS) statistics implemented in the TSLOIMdata analysis software [TexSEM Laboratories (2004), Draper, UT, USA]. In the case of grain boundaries (GBs) a new method of analysis is presented. As an addition to the classical line segments method, where the grain boundary is represented by line segments that separate particular pairs of neighboring points, an approach that focuses on grain boundary areas is proposed. These areas are represented by sets of EBSD points, which are specially selected from a modified calculation procedure for the KAM. Different evolution mechanisms of intragranular boundaries, low-angle grain boundaries and high-angle grain boundaries are observed depending on the compression direction. The observed differences are consistent with the results obtained from KAM and GOS analysis. It is also concluded that the proposed method of grain boundary characterization seems to be promising, as it provides new and interesting analysis tools such as textures, absolute fractions and other EBSD statistics of the GB areas. This description may be more compatible with a real deformed microstructure, especially for grain boundaries with very small misorientation, which are indeed clustered areas of lattice defect accumulation.


2016 ◽  
Vol 879 ◽  
pp. 536-541
Author(s):  
Jian Sheng Zhang ◽  
Yan Li Zhu ◽  
Xiao Ying Fang ◽  
Wen Hong Yin ◽  
Cong Xiang Qin

The duplex stainless steels (UNS S32304) after solid solution annealing at two different temperature (1323K and 1573K) were subjected to the same cold rolling with ε =3 and subsequent annealing for 230 min at 1323 K . The corresponding interface character distribution (ICD) were determined by electron backscatter diffraction (EBSD). The results show that a larger population of phase boundaries (PB) having K-S orientation relationship (OR) between the neighboring δ and γ grains was introduced and therefore higher intergrannular corrosion resistance (ICR) were resulted in the specimen initially solid-solution annealed at 1573K.


1999 ◽  
Vol 4 (2) ◽  
pp. 174-174
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  

2007 ◽  
Vol 537-538 ◽  
pp. 297-302
Author(s):  
Tibor Berecz ◽  
Péter János Szabó

Duplex stainless steels are a famous group of the stainless steels. Duplex stainless steels consist of mainly austenitic and ferritic phases, which is resulted by high content of different alloying elements and low content of carbon. These alloying elements can effect a number of precipitations at high temperatures. The most important phase of these precipitation is the σ-phase, what cause rigidity and reduced resistance aganist the corrosion. Several orientation relationships have been determined between the austenitic, ferritic and σ-phase in duplex stainless steels. In this paper we tried to verify them by EBSD (electron backscatter diffraction).


2013 ◽  
Vol 853 ◽  
pp. 143-150 ◽  
Author(s):  
Reza A. Mirshams ◽  
Ashish K. Srivastava

This paper presents the results of an experimental investigation on the effects of orientation and grain size on nanoindentation measurements of hardness and modulus of elasticity for three polycrystalline metals: copper, nickel, and iron. Three geometrically different indenter tips were used, and the pile-ups were characterized with a surface probe instrument. The electron backscatter diffraction (EBSD) technique and a scanning electron microscope (SEM) were used to characterize grain orientation and microstructure. It was found that additional contact areas due to pile-ups have a significant effect on determination of mechanical properties by the nanoindenter.


2010 ◽  
Vol 638-642 ◽  
pp. 396-400 ◽  
Author(s):  
Tricia A. Bennett ◽  
Jurij J. Sidor ◽  
Roumen H. Petrov ◽  
Leo Kestens

Roping was investigated in two 6016 aluminium alloys that exhibit different levels of susceptibility to its occurrence. The level of roping is lower, as manifested by the less pronounced (roping) lines on the surface, in the GR material compared to the BR case. Through-process characterization of GR and BR materials by means of electron backscatter diffraction (EBSD) reveals similarities in the grain size, (grain) orientation texture and the spatial distribution of {100} <001> Cube grains up to, but not including the T4 state. Cube grains in the T4 state are spatially banded in the BR material but more uniformly distributed in the GR case. It was found that the thermo-mechanical treatments prior to the T4 state account for the difference in spatial distributions of Cube grains and hence, the different roping behaviours exhibited by these materials.


2007 ◽  
Vol 263 ◽  
pp. 207-212 ◽  
Author(s):  
Vĕra Rothová ◽  
Jiří Buršík ◽  
Milan Svoboda ◽  
Jiří Čermák

Grain boundary self-diffusion in both the cast and the cold-rolled Puratronic 4N5 nickel was studied in the temperature range from 600 °C to 1000 °C. The experiments were carried out with the samples pre-annealed at 1100 °C in comparison to the samples pre-annealed at intended individual diffusion temperatures. The relative grain orientation was analyzed on the same samples by means of electron backscatter diffraction (EBSD) and grain boundaries (GBs) were characterized in terms of the coincidence site lattice (CSL) model. Considering the non-linear Arrhenius temperature dependencies obtained for most specimens by using conventional method of profile evaluation in the B-type kinetics and the appearance of two high-diffusivity paths in diffusion profiles measured, a more suitable BB-type and AB-type diffusion models were applied for data evaluation.


2008 ◽  
Vol 2008 (0) ◽  
pp. _OS1205-1_-_OS1205-2_
Author(s):  
Teruaki YAMADA ◽  
Masayuki KAMAYA ◽  
Masatoshi KURODA ◽  
Takeshi YASUDA ◽  
Takuya DAIBA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document