Effect of in-situ grown SiC nanowire and dense SiC on oxidation resistance of carbon fiber/SiC nanowire/SiC matrix composite in high temperature atmospheric environment

2018 ◽  
Vol 135 ◽  
pp. 46-56 ◽  
Author(s):  
Jyoti Prakash ◽  
P.S. Sarkar ◽  
Jitendra Bahadur ◽  
Kinshuk Dasgupta
2019 ◽  
Vol 210 ◽  
pp. 189-201 ◽  
Author(s):  
Fan Wan ◽  
Rongjun Liu ◽  
Yanfei Wang ◽  
Yingbin Cao ◽  
Changrui Zhang ◽  
...  

AIP Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 015319
Author(s):  
Pinghu Chen ◽  
Ruiqing Li ◽  
Ripeng Jiang ◽  
Songsheng Zeng ◽  
Yun Zhang ◽  
...  

2015 ◽  
Vol 1754 ◽  
pp. 13-18 ◽  
Author(s):  
Michael Behr ◽  
James Rix ◽  
Brian Landes ◽  
Bryan Barton ◽  
Eric Hukkanen ◽  
...  

ABSTRACTThis paper will discuss the structure-property model developed that correlates the tensile modulus to the elastic properties and angular distribution of constituent graphitic layers for carbon fiber derived from a polyethylene precursor. In addition, a high-temperature fiber tensile device was built to enable heating of carbon fiber bundles at a variable rate from 25 °C to greater than ∼2300 °C, while simultaneously applying a tensile stress. This capability combined with synchrotron wide-angle x-ray diffraction (WAXD), enabled observation in situ and in real time of the microstructural transformation from different carbon fiber precursors to high-modulus carbon fiber. Experiments conducted using PAN- and PE-derived fiber precursors reveal stark differences in their carbonization and high-temperature graphitization behavior.


2007 ◽  
Vol 546-549 ◽  
pp. 1489-1494 ◽  
Author(s):  
Ai Qin Liu ◽  
Shu Suo Li ◽  
Lu Sun ◽  
Ya Fang Han

Nb-16Si-24Ti-6Cr-6Al-2Hf-xB(x=0, 0.5, 1, 2, 4, 6) in situ composites were prepared by arc-melting. Microstructure and the effect of boron on 1250C oxidation resistance of the composites were investigated by scanning electron microscopy(SEM) and X-ray energy disperse spectrum(EDS) as well as X-ray diffraction(XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was remarkably improved by adding proper amount of boron. This may be resulted from several beneficial roles of boron, i.e., boron improves the resistance of Nb5Si3 by solid solution strengthening, inhibits the diffusion of oxygen in the matrix, improves the adherence between the oxide scale and the substrate and increases the cracking resistance of the oxide scale.


Sign in / Sign up

Export Citation Format

Share Document