Tautomeric equilibrium and hydroxyl group internal rotation in 4-hydroxypyridine

2006 ◽  
Vol 425 (1-3) ◽  
pp. 6-9 ◽  
Author(s):  
Raquel Sanchez ◽  
B. Michela Giuliano ◽  
Sonia Melandri ◽  
Walther Caminati
1969 ◽  
Vol 22 (5) ◽  
pp. 935 ◽  
Author(s):  
RK Norris ◽  
S Sternhell

The preparation and physical properties of 27 compounds in the title series are described. Tautomerism, syn-anti isomerism, N.M.R. parameters, and the mechanism of isomerization are discussed. In this series of derivatives, the tautomeric equilibrium in dioxan solutions lies heavily towards the oxime form unless intramolecular hydrogen bonding between the substituent at C2 (or C6) and the phenolic hydroxyl group of the nitroso form is possible. The substituents at C2 (and C6) influence the position of the syn-anti equilibrium in the quinone monoxime forms through electronic effects.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ol'ha O. Brovarets' ◽  
Alona Muradova ◽  
Dmytro M. Hovorun

For the first time, at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, a comprehensive quantum-mechanical investigation of the physico-chemical mechanism of the tautomeric wobblization of the four biologically-important G·C nucleobase pairs by the participation of the monomers in rare, in particular mutagenic, tautomeric forms (marked with an asterisk) was provided. These novel tautomeric transformations (wobblization or shifting of the bases within the pair) are intrinsically inherent properties of the G·C nucleobase pairs. In this study, we have obtained intriguing results, lying far beyond the existing representations. Thus, it was shown that Löwdin's G*·C*(WC) base pair does not tautomerize according to the wobblization mechanism. Tautomeric wobblization of the G*·C*(rWC) (relative Gibbs free energy ΔG = 0.00/relative electronic energy ΔE = 0.00 kcal·mol−1) (“r”—means the configuration of the base pair in reverse position; “WC”—the classic Watson-Crick configuration) and G*t·C*(H) (ΔG = −0.19/ΔE = 0.29 kcal·mol−1) (“H”—Hoogsteen configuration;”t” denotes the O6H hydroxyl group in the trans position) base pairs are preceded by the stages of the base pairs tautomerization by the single proton transfer (SPT). It was established that the G*t·C*(rH) (ΔG = 2.21/ΔE = 2.81 kcal·mol−1) base pair can be wobbled through two different pathways via the traditional one-stage mechanism through the TSs, which are tight G+·C− ion pairs, stabilized by the participation of only two intermolecular H-bonds. It was found out that the G·C base pair is most likely incorporated into the DNA/RNA double helix with parallel strands in the G*·C*(rWC), G·C*(rwwc), and G*·C(rwwc) (“w”—wobble configuration of the pair) tautomeric forms, which are in rapid tautomeric equilibrium with each other. It was proven that the G*·C*(rWC) nucleobase pair is also in rapid tautomeric equilibrium with the eight tautomeric forms of the so-called Levitt base pair. It was revealed that a few cases of tautomerization via the DPT of the nucleobase pairs by the participation of the C8H group of the guanine had occurred. The biological role of the obtained results was also made apparent.


1981 ◽  
Vol 10 (3) ◽  
pp. 307-310 ◽  
Author(s):  
Fujito Nemoto ◽  
Kazuo Mukai ◽  
Noriko Tsuzuki ◽  
Kazuhiko Ishizu

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 699
Author(s):  
Valentina Martinez ◽  
Nikola Bedeković ◽  
Vladimir Stilinović ◽  
Dominik Cinčić

In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state, we have prepared a series of cocrystals derived from an asymmetric β-diketone, benzoyl-4-pyridoylmethane (b4pm), as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb), 1,2-, 1,3- and 1,4-diiodotetraflorobenzene (12tfib, 13tfib and 14tfib) and 1,3,5-triiodo-2,4,6-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures, somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone, benzoyl-3-pyridoylmethane (b3pm); however, all attempts were unsuccessful, which is attributed to more effective crystal packing of b3pm isomer compared to b4pm, which reduced the probability of cocrystal formation.


2000 ◽  
Vol 179 ◽  
pp. 379-380
Author(s):  
Gaetano Belvedere ◽  
Kirill Kuzanyan ◽  
Dmitry Sokoloff

Extended abstractHere we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone. We calculate here a spatial 2-D structure of the mean magnetic field, adopting real profiles of the solar internal rotation (the Ω-effect) and an extended prescription of the turbulent α-effect. In our model assumptions we do not prescribe any meridional flow that might seriously affect the resulting generated magnetic fields. We do not assume apriori any region or layer as a preferred site for the dynamo action (such as the overshoot zone), but the location of the α- and Ω-effects results in the propagation of dynamo waves deep in the convection zone. We consider an axially symmetric magnetic field dynamo model in a differentially rotating spherical shell. The main assumption, when using asymptotic WKB methods, is that the absolute value of the dynamo number (regeneration rate) |D| is large, i.e., the spatial scale of the solution is small. Following the general idea of an asymptotic solution for dynamo waves (e.g., Kuzanyan & Sokoloff 1995), we search for a solution in the form of a power series with respect to the small parameter |D|–1/3(short wavelength scale). This solution is of the order of magnitude of exp(i|D|1/3S), where S is a scalar function of position.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


2020 ◽  
Vol 21 (6) ◽  
pp. 612
Author(s):  
Yunkun Wei ◽  
Tianhong Zhang ◽  
Zhonglin Lin ◽  
Qi Xie ◽  
Yan Zhang

After the lean fuel premixed combustion technology is applied to aero engines, severe combustion oscillations will be cased and led to hidden safety hazards such as engine vibration, further energy waste and other problems. Therefore, it is increasingly important to actively control combustion oscillations. In this paper, a multispectral radiation thermometry (MRT) is used to analyze the hydroxyl group, which is a measurable research object in the combustion chamber of an aero engine, and to fit the functional relationship between the radiation intensity ratio and the temperature in different bands. The theoretical value of the error is <2%. At the same time, in order to solve the problem of weak detection signal and excessive interference signal, an improved frequency domain filtering method based on fast Fourier transform is designed. Besides, the FPGA platform is used to ensure the real-time performance of the temperature measurement system, and simulations and experiments are performed. An oscillating signal with an oscillation frequency of 315 Hz is obtained on the established test platform, and the error is only 1.42%.


Sign in / Sign up

Export Citation Format

Share Document