State of knowledge on biological effects at 40–60 GHz

2013 ◽  
Vol 14 (5) ◽  
pp. 402-411 ◽  
Author(s):  
Yves Le Dréan ◽  
Yonis Soubere Mahamoud ◽  
Yann Le Page ◽  
Denis Habauzit ◽  
Catherine Le Quément ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 ◽  
Author(s):  
Takashi Hikage ◽  
Ryunosuke Ozaki ◽  
Tatsuya Ishitake ◽  
Hiroshi Masuda

The global spread of 5th generation (5G) wireless systems causes some concern about health effects of millimeter waves (MMW). To investigate biological effects of local exposure to 5G-MMW on human body, a novel 60 GHz band exposure setup was developed, and its performance was validated. A spatial synthetic beam-type exposure setup using two dielectric lens antennas was proposed to achieve high intensity 60 GHz irradiation to the target area of human skin. Variety distributions and intensities of electromagnetic fields at the exposed area, which is modified by incident angles of the combined beams, were simulated using finite-difference time-domain methods. The exposure performance we estimated was verified by temperature elevations of surface in a physical arm-shaped silicone phantom during the MMW exposure. The interference fringes generated in the exposed area due to the combined two-directional beam radiations were observed both in the simulation and in the phantom experiment but eliminated by applying an orthogonalizing polarized feeding structure. Under these exposure conditions, the local temperature changes, which could evoke warmth sensations, were obtained at the target area of the human forearm skin, which means the achievement of exposure performance we intended.


2009 ◽  
Vol 57 (10) ◽  
pp. 2949-2956 ◽  
Author(s):  
M. Zhadobov ◽  
C.N. Nicolaz ◽  
R. Sauleau ◽  
F. Desmots ◽  
D. Thouroude ◽  
...  

Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


1967 ◽  
Vol 56 (1_Suppl) ◽  
pp. S122
Author(s):  
P.-J. Czygan ◽  
D. Krebs ◽  
F. Lehmann ◽  
G. Bettendorf

1974 ◽  
Vol 77 (1_Suppla) ◽  
pp. S315-S354 ◽  
Author(s):  
F. Neumann ◽  
R. von Berswordt-Wallrabe ◽  
W. Elger ◽  
K.-J. Gräf ◽  
S. H. Hasan ◽  
...  

ABSTRACT Two types of so-called "depot contraceptives", long-acting steroids which are of interest for human use, were studied in animals. Norethisterone oenanthate, mainly gestagenic in the human and other species, turned out to be predominantly oestrogenic in rats. This oestrogenicity caused indirectly, via an enhanced hypophysial prolactin secretion, the well-known hypophysial and mammary tumours in rats. Another synthetic gestagen, 4,6-dichloro- 17- acetoxy- 16α-methyl-4,6-pregnadiene-3,20-dione, which might be considered in its biological actions similar to preparations containing chlormadinone acetate or medroxy-progesterone acetate, induced no signs of oestrogenicity in dogs. It is surmised that its gestagenic influence indirectly, and probaby, via an enhanced hypophysial prolactin secretion caused "mammary nodules" in this "non-rodent" species. These studies have born out mainly two facts: A synthetic steroid, norethisterone oenanthate, exerted different biological effects in different species: it was a gestagen in the rabbit, whereas in rats, its predominant influence was oestrogenic. The hypophysial prolactin secretion was enhanced in various species by different mechanisms: in rats, the oestrogenicity caused an increased prolactin plasma level, whereas in dogs, a gestagen with obviously no inherent oestrogenicity, 4,6-dichloro-17-acetoxy-16α-methyl-4,6-pregnadiene-3,20-dione, converted the histological appearance of the anterior pituitary into a condition with a greatly increased number of eosinophils. This histological finding was interpreted as an indicator for a hypersecretion of prolactin. Hence, animal work with "gestagens" has only limited predictive value with respect to their possible effects in the human species. Therefore, inflexible recommendations are not helpful in solving the safety problem of long-acting steroids which affect primarily reproductive processes.


Sign in / Sign up

Export Citation Format

Share Document