Neuroendocrine differentiation in castration resistant prostate cancer. Nuclear medicine radiopharmaceuticals and imaging techniques: A narrative review

2019 ◽  
Vol 138 ◽  
pp. 29-37 ◽  
Author(s):  
Sharjeel Usmani ◽  
Marina Orevi ◽  
Antonella Stefanelli ◽  
Alberto Zaniboni ◽  
Ofer Nathan Gofrit ◽  
...  
Author(s):  
Fred Saad ◽  
Martin Bögemann ◽  
Kazuhiro Suzuki ◽  
Neal Shore

Abstract Background Nonmetastatic castration-resistant prostate cancer (nmCRPC) is defined as a rising prostate-specific antigen concentration, despite castrate levels of testosterone with ongoing androgen-deprivation therapy or orchiectomy, and no detectable metastases by conventional imaging. Patients with nmCRPC progress to metastatic disease and are at risk of developing cancer-related symptoms and morbidity, eventually dying of their disease. While patients with nmCRPC are generally asymptomatic from their disease, they are often older and have chronic comorbidities that require long-term concomitant medication. Therefore, careful consideration of the benefit–risk profile of potential treatments is required. Methods In this review, we will discuss the rationale for early treatment of patients with nmCRPC to delay metastatic progression and prolong survival, as well as the factors influencing this treatment decision. We will focus on oral pharmacotherapy with the second-generation androgen receptor inhibitors, apalutamide, enzalutamide, and darolutamide, and the importance of balancing the clinical benefit they offer with potential adverse events and the consequential impact on quality of life, physical capacity, and cognitive function. Results and conclusions While the definition of nmCRPC is well established, the advent of next-generation imaging techniques capable of detecting hitherto undetectable oligometastatic disease in patients with nmCRPC has fostered debate on the criteria that inform the management of these patients. However, despite these developments, published consensus statements have maintained that the absence of metastases on conventional imaging suffices to guide such therapeutic decisions. In addition, the prolonged metastasis-free survival and recently reported positive overall survival outcomes of the three second-generation androgen receptor inhibitors have provided further evidence for the early use of these agents in patients with nmCRPC in order to delay metastases and prolong survival. Here, we discuss the benefit–risk profiles of apalutamide, enzalutamide, and darolutamide based on the data available from their pivotal clinical trials in patients with nmCRPC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Theresa Akoto ◽  
Byron Lui ◽  
Barbara A. Bensing ◽  
...  

AbstractNeuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an ‘EV-miRNA classifier’ that could robustly stratify ‘CRPC-NE’ from ‘CRPC-Adeno’. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.


Author(s):  
Michelle Naidoo ◽  
Fayola Levine ◽  
Tamara Gillot ◽  
Akintunde T. Orunmuyi ◽  
E. Oluwabunmi Olapade-Olaopa ◽  
...  

High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.


Oncogene ◽  
2020 ◽  
Vol 39 (49) ◽  
pp. 7209-7223
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Nikhil Patel ◽  
Theresa Akoto ◽  
Byron Lui ◽  
...  

2021 ◽  
Author(s):  
Wisam N. Awadallah ◽  
Jagpreet S. Nanda ◽  
Sarah E. Kohrt ◽  
Magdalena M Grabowska

Castration-resistant prostate cancer represents a continuum of phenotypes, including tumors with high levels of androgen receptor (AR) expression and activity and those which do not express AR and rely on alternative pathways for survival. The process by which AR-positive prostate cancer cells and tumors lose AR expression and acquire neuroendocrine features is referred to as neuroendocrine differentiation. Numerous therapies and exposures have been demonstrated to induce neuroendocrine differentiation in vitro, including the pro-inflammatory cytokine, interleukin 1 beta (IL-1β), encoded by the gene IL1B. The purpose of our studies was to determine the relationship between the expression and activity of AR in relationship to IL-1β and IL1B in prostate cancer. We performed analysis of de-identified human clinical data and generated prostate cancer cell lines with overexpression or knockout of IL1B. In primary prostate cancer, higher expression of IL1B predicts longer time to biochemical recurrence. In metastatic castration-resistant prostate cancer, IL1B expression is decreased and inversely correlates with AR and AR-target gene expression and AR activity, while positively correlating with the neuroendocrine prostate cancer (NEPC) score and neuroendocrine marker gene expression. In vitro, we report that AR-positive castration-resistant prostate cancer cells (C4-2B, 22Rv1) secrete IL-1β, and knockout of IL1B in these cells results in increased AR activity, in the presence and absence of dihydrotestosterone (DHT). Importantly, knockout of IL1B prevented AR attrition during androgen-deprivation. Taken together, our studies demonstrate that loss of IL1B in AR-positive castration-resistant prostate cancer cells can increase and maintain AR activity in the absence of androgens, suggesting another potential mechanism of high AR activity in castration-resistant prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document