Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil

2019 ◽  
Vol 126 ◽  
pp. 104922 ◽  
Author(s):  
Xugen Shi ◽  
Kang Qiao ◽  
Baotong Li ◽  
Shouan Zhang
Nematology ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 479-485 ◽  
Author(s):  
Maria Munawar ◽  
Sajid Aleem Khan ◽  
Nazir Javed ◽  
Imran Ul Haq ◽  
Amjad Shahzad Gondal

The potential of biocontrol agentsPurpureocillium lilacinum(Paecilomyceslilacinus) andTrichodermaharzianumwas evaluated against tomato wilt complex, caused by a combination ofMeloidogyne incognitaandFusarium oxysporumf. sp.lycopersici, under both laboratory and field conditions. Biocontrol agents at spore concentration of 1 × 106spores ml−1were applied alone and in combined treatments. The results of combined application revealed maximum mortality and inhibition of hatching ofM. incognitaunderin vitroconditions. Combined application of both antagonistic fungi was found to be more effective in mycelial inhibition ofFusarium oxysporumf. sp.lycopersici. In glasshouse trials, application ofT. harzianumpromoted overall plant growth, followed by combined application ofP. lilacinumandT. harzianum; nematode development parameters and fungus damage were significantly reduced. Under field conditions, the combined application ofP. lilacinumandT. harzianumincreased the number of leaves, shoot length, shoot weight and root length, and decreased root weight, with minimum number of females and egg masses ofM. incognitaper root system and mycelia inhibition ofF. oxysporum.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 948-956 ◽  
Author(s):  
Alois A. Bell ◽  
Robert C. Kemerait ◽  
Carlos S. Ortiz ◽  
Sandria Prom ◽  
Jose Quintana ◽  
...  

Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. oxysporum f. sp. vasinfectum isolates obtained from 107 wilted plants collected from seven fields in five counties. Eight vegetative complementation groups (VCG) were found, with VCG 01117B and VCG 01121 occurring in 66% of the infected plants. The newly recognized VCG 01121 was the major VCG in Berrien County, the center of the outbreaks. All eight VCG resulted in significant increases in the percentages of wilted leaves (27 to 53%) and significant reductions in leaf weight (40 to 67%) and shoot weight (33 to 60%) after being stem punctured into Gossypium hirsutum ‘Rowden’. They caused little or no significant reductions in shoot weight and height or increases in foliar symptoms and vascular browning in a soil-infestation assay. Soil infestation with Meloidogyne incognita race 3 (root-knot nematode) alone also failed to cause significant disease. When coinoculated with M. incognita race 3, all VCG caused moderate to severe wilt. Therefore, the VCG identified in this study belong to the vascular-competent pathotype, and should pose similar threats to cotton cultivars in the presence of the root-knot nematode. Use of nematode-resistant cultivars, therefore, is probably the best approach to control the disease in Georgia.


2015 ◽  
Vol 39 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Juan Carlos Álvarez-Hernández ◽  
Javier Zaragoza Castellanos-Ramos ◽  
César Leobardo Aguirre-Mancilla ◽  
María Victoria Huitrón-Ramírez ◽  
Francisco Camacho-Ferre

Cucurbita maxima x Cucurbita moschata rootstock are used to prevent infection with Fusarium oxysporum f. sp. niveum in watermelon production; however, this rootstock is not effective against nematode attack. Because of their vigor, the grafted plants can be planted at lower plant densities than the non-grafted plants. The tolerance to Fusarium oxysporum f. sp. niveum and Meloidogyne incognita was assessed in watermelon plants grafted onto a hybrid of Citrullus lanatus cv Robusta or the Cucurbita maxima x Cucurbita moschata cv Super Shintoza rootstocks. The densities of plants were 2083 and 4166 plants ha-1. Non-grafted watermelons were the controls. The Crunchy Red and Sangría watermelon cultivars were used as the scions, it the latter as a pollinator. The experiments were performed for two production cycles in soils infested with Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. The incidence of Fusarium oxysporum f. sp. niveum was significantly greater in the non-grafted than in the grafted plants. The grafted plants presented similar resistance to Fusarium regardless of the rootstock. The root-knot galling index for Meloidogyne incognita was significantly lower in plants grafted onto Citrullus lanatus cv Robusta than onto the other rootstock. The yields of plants grafted onto Citrullus lanatus cv Robusta grown at both plant densities were significantly higher than in the other treatments.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1136
Author(s):  
Caiyun Xiao ◽  
Rongyu Li

Soft rot causing Fusarium oxysporum is one of the most destructive diseases of Dendrobium officinale Kimura et Migo in China that reduces D. officinale yield and quality. A key challenge for an integrated management strategy for this disease is the rapid and accurate detection of F. oxysporum on D. officinale. Therefore, a new loop-mediated isothermal amplification (LAMP) assay was developed for this purpose. In this study, the primers were selected and designed using the translation elongation factor-1α (TEF-1α) gene region as the target DNA sequence in order to screen the best system of reaction of LAMP to detect F. oxysporum through optimizing different conditions of the LAMP reaction, including time, temperature, concentrations of MgSO4, and concentrations of inner and outer primers. The optimized system was able to efficiently amplify the target gene at 62 °C for 60 min with 1.2 μM internal primers, 0.4 μM external primers, 7 mM Mg2+, and 5 fg/µL minimum detection concentration of DNA for F. oxysporum. The amplified products could be detected with the naked eye after completion of the reaction with SYBR green I. We were better able to control the effect of soft rot in D. officinale using fungicides following a positive test result. Additionally, the control effect of synergism combinations against soft rot was higher than 75%. Thus, LAMP assays could detect F. oxysporum in infected tissues of D. officinale and soils in field, allowing for early diagnosis of the disease.


2017 ◽  
Vol 49 (5) ◽  
Author(s):  
Adnan Yousaf ◽  
Jia Wu ◽  
Qaiser Shakeel ◽  
Yasir Iftikhar ◽  
Muhammad Irfan Ullah Ullah ◽  
...  

2021 ◽  
pp. 284-289
Author(s):  
J. Ole Becker

Abstract This chapter discusses the economic importance, geographical distribution, host range, damage symptoms, biology and life cycle, interactions with other nematodes and pathogens, recommended integrated management, and management optimization of Meloidogyne incognita infesting carrots in California, USA. Future research requirements and future developments are also mentioned.


Sign in / Sign up

Export Citation Format

Share Document