Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae)

2022 ◽  
Vol 153 ◽  
pp. 105882
Author(s):  
Alisson da Silva Santana ◽  
Edson Luiz Lopes Baldin ◽  
Thais Lohaine Braga dos Santos ◽  
Yago Alves Baptista ◽  
Maria Clezia dos Santos ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3902
Author(s):  
Abdullahi Adamu ◽  
Khairulmazmi Ahmad ◽  
Yasmeen Siddiqui ◽  
Intan Safinar Ismail ◽  
Norhayu Asib ◽  
...  

The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50–125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 μL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 532
Author(s):  
William R. Patiño-Bayona ◽  
Leidy J. Nagles Galeano ◽  
Jenifer J. Bustos Cortes ◽  
Wilman A. Delgado Ávila ◽  
Eddy Herrera Daza ◽  
...  

Chemical control of the maize weevil (Sitophilus zeamais) has been ineffective and presents serious collateral damage. Among plant-derived insecticides, essential oils (EOs) are suitable candidates to control this stored products pest. In this work, the insecticidal activities of 45 natural EOs against S. zeamais adults were screened, and the most promising ones (24 EOs) were characterized by GC–MS. The repellent and toxic effects (contact and fumigant) of these 24 EOs were determined, and by a cluster analysis they were classified into two groups considering its fumigant activity and contact toxicity. For the EOs with the highest fumigant potential (14 oils) and their main active constituents (17 compounds), lethal concentrations were determined. The most active EOs were those obtained from L. stoechas and L. alba, with LC50 values of 303.4 and 254.1 µL/L air and characterized by a high content of monoterpenes. Regarding the major compounds, the oxygenated monoterpenes R-(+)-pulegone (LC50 = 0.580 mg/L air), S-(-)-pulegone (LC50 = 0.971 mg/L air) and R-(-)-carvone (LC50 = 1.423 mg/L air) were the most active, as few variations in their concentrations significantly increased insect mortality.


2015 ◽  
Vol 17 (4 suppl 1) ◽  
pp. 769-773 ◽  
Author(s):  
R.L. CANSIAN ◽  
V. ASTOLFI ◽  
R.I. CARDOSO ◽  
N. PAROUL ◽  
S.S. ROMAN ◽  
...  

ABSTRACT The aim of this work was to evaluate the insecticidal and repellency activity of the essential oil of Cinnamomum camphora var. linaloolifera Y. Fujita (Ho-Sho) and Cinnamomumcamphora (L.) J Presl.var. hosyo (Hon-Sho), against the Sitophilus zeamais in maize grains. The essential oils were obtained by hydrodistillation and analyzed by GC-MS.The insecticidal activity was determined by the toxicity of different concentrations of essential oils during 24 hours of contact with the insects, in the absence of feed substrate. The Bioassays of repellency were conducted with lethal doses (LD50,LD25,and LD12.5) obtained from insecticidal bioassay. In order to compare the treatments the preference index (PI) was employed. The analysis of the essential oils of Cinnamomum camphora leaves indicated 68% of camphor and 9% of linalool for the variation Hon-Sho and 95% of linalool to the variation Ho-Sho. The variation Ho-Sho presented greatest insecticidal activity than the variation Hon-Sho against the Sitophiluszeamais, with LD50 of 0.35 μL/cm2, whereas in the variation Hon-Sho the ratewas 0.48 μL/cm2. However, considering only the concentrations of linalool and camphor of Ho-Sho and Hon-Sho, the lethal doses’ evaluation of these compounds were similar. The values of the preference index ranged from -0.3 to -0.8 for thevariation Ho-Sho and -0.2 to -0.7 for the variation Hon-Sho. The essential oils evaluated in this work showed repellent activity against Sitophiluszeamais in vitro and in trials performed in mini-silos.


10.5219/1483 ◽  
2021 ◽  
Vol 15 ◽  
pp. 210-217
Author(s):  
Veronika Valková ◽  
Hana Ďúranová ◽  
Lucia Galovičová ◽  
Eva Ivanišová ◽  
Miroslava Kačániová

The current study aimed to investigate antifungal activities of two commercially available essential oils (EOs), specifically Tea tree oil (Melaleuca alternifolia; TTEO) and St. John's wort oil (Hypericum perforatum; HPEO) against three Penicillium (P.) species: P. citrinum, P. expansum, and P. crustosum in in situ conditions. For this purpose, EOs were applied in the vapor phase to determine the growth inhibition of fungi artificially inoculated on sliced bread. Changes in colony growth rate were evaluated as markers for the mycelial growth inhibition (MGI) effect of the EOs. The antioxidant activities of the EOs were evaluated using the DPPH method. The moisture content (MC) and water activity (aw) of bread as a substrate for fungal growth were also measured. From the DPPH assay, we have found that both EOs (TTEO, HPEO) exhibited strong antioxidant activity (64.94 ±7.34%; 70.36 ±1.57%, respectively). The values for bread MC and aw were 43.01 ±0.341% and 0.947 ±0.006, respectively. Our results suggest that HPEO is the only weak inhibitor of P. citrinum and P. crustosum colony growths. Also, the highest concentrations of TTEO display only the weak capability of mycelial growth inhibition of P. citrinum and P. crustosum. By contrast, the colony growth of P. expansum was enhanced by both EOs at all levels used. In conclusion, the application of both EOs in the vapor phase against selected Penicillium species seems not to be a promising alternative to chemical inhibitors used for bread preservation.


2020 ◽  
Vol 21 (3) ◽  
pp. 129
Author(s):  
N. O Sanyaolu ◽  
E. B Agboyinu ◽  
S. T Yussuf ◽  
O. I. Sonde ◽  
O. N Avoseh ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 164
Author(s):  
Nasifu Kerebba ◽  
Adebola O. Oyedeji ◽  
Robert Byamukama ◽  
Simon K. Kuria ◽  
Opeoluwa O. Oyedeji

The aim of this research is to characterize the variation in the chemical composition of Tephrosia vogelii essential oils from different locations and to investigate the repellency of essential oils against Sitophilus zeamais. Chemical variability in the components of T. vogelii essential oils from eastern Uganda was identified using principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). Based on the profiles of the compounds of the farnesene family, three chemotypes were found: farnesol (chemotype 1), springene (β-springene and α-springene) and β-farnesene were all distinctive in chemotype 2 and a mixed variety of farnesol and springene. In the three cases, alkyl benzenes (o-xylene, m-xylene and ethylbenzene) were significant components in the oil. The compounds 1,4-dihydroxy-p-menth-2-ene, 6,10-dimethyl-5,9-undecadien-2-one, and 3,4-dimethyl-3-cyclohexen-1-carboxaldehyde were other prominent constituents. The yields of the essential oils did not vary significantly, however the chemical composition varied with harvesting time during the rainy and dry seasons. In choice repellency tests, chemotype 1 and chemotype 2 were more active against Sitophilus zeamais than the mixed chemotype. Farnesol was found to be effective only at a higher concentration as a repellent against S. zeamais. We therefore hypothesize that farnesol is a key player in this and we demonstrated the weak repellency of this compound. However, further study that aims to optimize and standardize the varieties and harvesting period is needed for recommendation to smallhold farmers.


1992 ◽  
Vol 30 (1) ◽  
pp. 9-16 ◽  
Author(s):  
J. W. Mwangi ◽  
I. Addae-Mensah ◽  
G. Muriuki ◽  
R. Munavu ◽  
W. Lwande ◽  
...  

Author(s):  
Nasifu Kerebba ◽  
Adebola Oyedeji ◽  
Robert Byamukama ◽  
Simon Kuria ◽  
Opeoluwa Oyedeji

Chemical variability in the components of T. vogelii essential oils from eastern Uganda was identified using principal component analysis (PCA) and Agglomerative hierarchical clustering (AHC). Based on the profiles of the compounds of farnesene family three chemotypes were found: farnesol (chemotype 1), springene (β- Springene and α-Springene) and the β-Farnesene were distinctive in chemotype 2 and a mixed variety of farnesol and the Springene. In the three cases, alkybenzenes; o-xylene, m-xylene and ethylbenzene were significant components in the oil. 1,4-dihydroxy-p-menth-2-ene, 5,9-undecadien-2-one, 6,10-dimethyl, and 3-cyclohexen-1-carboxaldehyde,3,4-dimethyl were other prominent constituents. The yields of the essential oils did not vary significantly however the chemical composition varied with harvesting time during the rainy and dry seasons. In choice repellency tests, chemotype 1 and chemotype 2 were more active against Sitophilus zeamais than mixed chemotype. Farnesol was found to be effective only at a higher concentration as a repellent against S. zeamais. However, further study that aims to optimize and standardize the varieties and harvesting period needed for recommendation to smallhold farmers.


2020 ◽  
Author(s):  
Farzaneh Mirzaei ◽  
Roghayeh Norouzi ◽  
Abolghasem Siyadatpanah ◽  
Bibi Fatemeh Haghirosadat ◽  
Fatemeh Rezaei ◽  
...  

Abstract Background: Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually-transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity.Methods: In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. Liposomal vesicles were prepared with phosphatidylcholine (70%) and cholesterol (30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 hours of parasite cultures in TYI-S-33 medium. Results: After 12 and 24 hours of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 µg/mL and 45.19 µg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 µg/mL and 25.81 µg/mL, respectively. Conclusions: These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.


Sign in / Sign up

Export Citation Format

Share Document