scholarly journals Insecticidal and repellent activity of the essential oil of Cinnamomum camphora var. linaloolifera Y. Fujita (Ho-Sho) and Cinnamomum camphora (L.) J Presl. var. hosyo (Hon-Sho) on Sitophilus zeamaisMots. (Coleoptera, Curculionedae)

2015 ◽  
Vol 17 (4 suppl 1) ◽  
pp. 769-773 ◽  
Author(s):  
R.L. CANSIAN ◽  
V. ASTOLFI ◽  
R.I. CARDOSO ◽  
N. PAROUL ◽  
S.S. ROMAN ◽  
...  

ABSTRACT The aim of this work was to evaluate the insecticidal and repellency activity of the essential oil of Cinnamomum camphora var. linaloolifera Y. Fujita (Ho-Sho) and Cinnamomumcamphora (L.) J Presl.var. hosyo (Hon-Sho), against the Sitophilus zeamais in maize grains. The essential oils were obtained by hydrodistillation and analyzed by GC-MS.The insecticidal activity was determined by the toxicity of different concentrations of essential oils during 24 hours of contact with the insects, in the absence of feed substrate. The Bioassays of repellency were conducted with lethal doses (LD50,LD25,and LD12.5) obtained from insecticidal bioassay. In order to compare the treatments the preference index (PI) was employed. The analysis of the essential oils of Cinnamomum camphora leaves indicated 68% of camphor and 9% of linalool for the variation Hon-Sho and 95% of linalool to the variation Ho-Sho. The variation Ho-Sho presented greatest insecticidal activity than the variation Hon-Sho against the Sitophiluszeamais, with LD50 of 0.35 μL/cm2, whereas in the variation Hon-Sho the ratewas 0.48 μL/cm2. However, considering only the concentrations of linalool and camphor of Ho-Sho and Hon-Sho, the lethal doses’ evaluation of these compounds were similar. The values of the preference index ranged from -0.3 to -0.8 for thevariation Ho-Sho and -0.2 to -0.7 for the variation Hon-Sho. The essential oils evaluated in this work showed repellent activity against Sitophiluszeamais in vitro and in trials performed in mini-silos.

2015 ◽  
Vol 17 (4 suppl 3) ◽  
pp. 1055-1060 ◽  
Author(s):  
F. VEDOVATTO ◽  
C. VALÉRIO JÚNIOR ◽  
V. ASTOLFI ◽  
P.A.A. MIELNICZKI ◽  
S.S. ROMAN ◽  
...  

ABSTRACT The use of natural compounds is a less aggressive alternative for the control of insects in stored grains, in relation to synthetic chemical agents. Plants with insecticidal properties can be used as a source of these compounds to the direct application in pest control. In this work, the essential oil of Cinnamodendron dinisii was chemically characterized and tested regarding its insecticidal and repellent effect on the control of Sitophilus zeamais in stored grains. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The insecticidal potential was evaluated through the maintenance of the insects during 24 hours in contact with several doses of the oil, in the absence of feed substrate. The Bioassays of repellency were conducted with lethal doses (LD5, LD25, LD50 and LD95) obtained from insecticidal bioassay. In order to compare the treatments, the preference index (PI) was used. The essential oil of C. dinisii had insecticidal activity against S. zeamais, causing a linear and crescent mortality with LD of 0.04, 0.17, 0.34 and 0.63 µL/cm2, respectively. The repellency ranged from 55.4% to 85.2%, using the LD values previously mentioned. The DL5 was neutral regarding repellence (PI index -0,09), but from DL25 on, the PI index was between -0.1 and -1.0, indicating repellence activity.


2020 ◽  
Vol 15 (2) ◽  
pp. 111-121
Author(s):  
William Ramiro Patiño Bayona ◽  
Erika Plazas ◽  
Jenifer Jhoana Bustos Cortes ◽  
Juliet Angélica Prieto Rodríguez ◽  
Oscar Javier Patiño Ladino

The maize weevil (Sitophilus zeamais) is one of the main insect responsible of significant losses in stored products, and to keep nutritional value of them to find effective and safe solutions are very important. The Hypericum genus might be a potential source of new bio-insecticides due to the chemical composition of essential oils. In this study, components of essential oils of three Hypericum species were investigated for first time by Gas Chromatography-Mass Spectrometry (GC-MS) and, fumigant and contact toxicities as well as the repellent activity of essential oils of them were evaluated against S. zeamais adults. While the main components in H. mexicanum oil were determined as n-nonane (53.08%) and α-pinene (25.28%), the major constituents were determined as α-pinene (45.52%) and β-caryophyllene (13.59%) in the essential oil of H. myricariifolium. Chemical composition of essential oil of H. juniperinum were found to be n-nonane (12.0%), α-pinene (8.25%), geranyl acetate (7.93%), and β-caryophyllene (13.60%). The results revealed that H. mexicanum and H. myricariifolium oils have fumigant toxicity (LC50 < 500 µL/L air) and a potential action as repellents (RP > 70% at 6.2–22.7 μL/L air) for the control of the pest.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2020 ◽  
Vol 9 (10) ◽  
pp. e5049108788
Author(s):  
Luciane Neris Cazella ◽  
Herika Line de Marko de Oliveira ◽  
Wanessa de Campos Bortolucci ◽  
Isabelle Luiz Rahal ◽  
Irinéia Paulina Baretta ◽  
...  

Baccharis dracunculifolia, native to Brazil and the main source of “green propolis”, has been reported with several biological activities, and may be a source of bovine tick control substituting synthetic acaricides. Objective: to evaluate the in vitro and ex situ acaricidal activity of B. dracunculifolia leaf and flower essential oils against Rhipicephalus microplus. Methodology: the essential oils were extracted by hydrodistillation and analyzed by a gas chromatography coupled to mass spectrometry; the acaricidal activity of the essential oil was evaluated in vitro against adult females and against the egg hatchability; moreover, the acaricidal activity against tick larvae was evaluated in vitro and ex situ. Results: the major class of the essential oils was oxygenated sesquiterpene (55.1% leaves 50.4% flowers) and the main compounds were (21.5% leaves; 20.6% flowers) and spathulenol (21.8% leaves; 20.3% flowers). The essential oil at 500 mg/mL was effective to control egg hatchability with a reduction of egg laying capacity and decrease of number of adult ticks and larvae. The larvicidal activity of the essential oil had LC99.9 from 35 to 37 mg/mL by probit analysis, and the essential oil from 11 to 14 mg/mL presented 85 to 95% of treatment efficiency in the ex situ test. Conclusion: B. dracunculifolia leaf and flower essential oils are stable and have application potential to control bovine ticks.


2021 ◽  
Vol 9 (1) ◽  
pp. 109-113
Author(s):  
Javed Ahamad ◽  
Subasini Uthirapathy

Pelargonium graveolens (Geranium) is a source of the finest quality of fragrance and its essential oils are used as antibacterial, and antifungal agents. The aim of the current research is to determine chemical constituents in the essential oil of P. graveolens by GC-MS and evaluate its antidiabetic activity via α-glucosidase inhibition assay. The chemical composition of P. graveolens essential oil was determined by GC/MS and its antidiabetic activity was assessed through inhibition of α-glucosidase enzyme in in-vitro models. GC-MS analysis determines 36 chemical components in the essential oil of P. graveolens leaves, and citronellyl isovalerate (10.41 %), menthol (9.61 %), linalool (8.63 %), p-menthone (6.31 %), and geranyl tiglate (4.99 %) were recorded as major constituents. The essential oil of P. graveolens leaves showed concentration dependant inhibition of α-glucosidase enzyme ranging from 28.13±1.41 to 74.24±2.53 µg/mL for concentration ranging from 31.25 to 1000 µg/mL. The IC50 values for of P. graveolens and acarbose were found as 93.72±4.76 and 80.4±2.17 µg/mL, respectively against the α-glucosidase enzyme. The study finding explores the chemical components of P. graveolens growing in the Iraqi Kurdistan region and scientifically supported its possible use in diabetic patients for controlling postprandial hyperglycemia.


2019 ◽  
Vol 6 (2) ◽  
pp. 181
Author(s):  
Laila Nur Rohma ◽  
Laila Nur Rohma ◽  
Osfar Sjofjan ◽  
M. Halim Natsir

ABSTRAK                                                                        Imbuhan pakan unggas dapat berasal dari bahan herbal yang mengandung berbagai komponen aktif yang bermanfaat bagi pertumbuhan ternak.Temu putih dan jahe gajah dapat dimanfaatkan sebagai imbuhan pakan karena mengandung minyak atsiri yang dapat berperan sebagai agen antibakteri. Penelitian ini bertujuan untuk mengetahui komponen penyusun minyak atsiri dan aktivitas antimikroba pada rimpang temu putih dan jahe gajah. Penelitian dilakukan dengan percobaan in vitro menggunakan temu putih dan jahe gajah yang diolah menjadi bentuk ekstrak minyak atsiri temu putih dan jahe gajah sebagai materi uji komposisi penyusun minyak atsiri serta bentuktepung dan enkapsulasi sebagai materi uji aktivitas antimikroba. Komposisi minyak atsiri temu putih terdiri dari lima komponen penyusun dengan cis-1,7-octadien-3-yl acetat sebagai komponen utama. Komposisi minyak atsiri jahe gajah terdiri dari tujuh komponen dan benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-(CAS) ar-curcumene sebagai komponen utama. Minyak atsiri yang terkandung pada temu putih dan jahe gajah mempunyai peran dalam menghambat mikroba. Uji komposisi penyusun minyak atsiri menggunakan alat GC-MS dan uji aktivitas antimikroba menggunakan metode disc diffusion dan. Hasil dari uji aktivitas antimikroba menunjukkan bahwa temu putih dan jahe gajah dalam bentuk tepung dan enkapsulasi memiliki perbedaan yang sangat nyata (P<0,01) terhadap aktivitas antimikroba pada bakteri asam laktat, Escherichia coli dan Salmonella sp. Campuran temu putih dan jahe gajah (1:1) menunjukkan kemampuan terbaik dalam menghambat pertumbuhan bakteri patogen dengan diameter zona hambat 5,70±0,14 mm  (Escherichia coli) dan 6,88±0,45 mm (Salmonella sp.).Kata Kunci : antimikroba, fitobiotik, jahe gajah, minyak atsiri, temu putihABSTRACTThe poultry feed additives can contain herbal ingredients that contain various beneficial components for livestock growth. White turmeric and giant ginger can be used as feed additives because they contain essential oils that can be used as antibacterial agents. This study aims to determine the constituent components of essential oils and antimicrobial activity in white turmeric and giant ginger rhizomes. The study was carried out by in vitro experiments using white turmeric and giant ginger which were processed into the form of essential oil extract as material for the composition of essential oils test, and powder and encapsulation form as antimicrobial activity test material. The composition of essential oils of white turmeric consists of five constituent components with cis-1,7-octadien-3-yl acetate as the main component. The composition of giant ginger essential oil consists of seven components with benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS) ar-curcumene as the main component. Essential oils contained in the white turmeric and giant ginger have a role in inhibiting microbes. The composition of the essential oil tested using GC-MS and the antimicrobial activity test used the disc diffusion method. The results of the antimicrobial activity test showed that white turmeric and giant ginger in powder and encapsulation form had significant differences (P <0.01) on antimicrobial activity in lactic acid bacteria, Escherichia coli and Salmonella sp. The mixture of white turmeric and giant ginger (1: 1) showed the best ability to inhibit the growth of pathogenic bacteria with inhibitory zone diameters of 5.70 ± 0.14 mm (Escherichia coli) and 6.88 ± 0.45 mm (Salmonella sp.).Keywords: antimicrobial, essential oil, giant ginger, phytobiotic, white turmeric


2021 ◽  
Vol 67 (2) ◽  
pp. 83-88
Author(s):  
Mahieddine Boumendjel ◽  
Abdennour Boucheker ◽  
Sandra Feknous ◽  
Faiza Taibi ◽  
Naouel Rekioua ◽  
...  

Depressive anxiety is one of the most emotional disorders in our industrial societies. Many treatments of phobias exist and are based on plant extracts therapies, which play an important role in the amelioration of the behavior. Our study aimed to evaluate the adaptogenic activity of different essential oils provided from local plants: Cinnamomum camphora (Camphora), Eucalyptus globulus (Blue gum), Lavandula stœchas (Topped lavender) and Rosmarinus officinalis (Rosemary) on Wistar rats. The adaptogenic activity was evaluated on the elevated plus-maze. The efficacy of the extract (200 mL/kg) was compared with the standard anxiolytic drug Diazepam® 1 mg. Animals administered by the essential oil of Lavandula stœchas, Cinnamomum camphora, Rosmarinus officinalis and Eucalyptus globulus showed a behavior similar to those treated with Diazepam®. For groups treated with the following essential oils: Rosmarinus officinalis, Lavandula stoechas and Cinnamomum camphora at a dose of 200 mL/kg, we notice an increase in the time spent on the open arms of the elevated plus-maze and a decrease in time spent on the closed arms of the elevated plus-maze, especially for Rosmarinus officinalis, which explains the anxiolytic effect of these plants. We also notice a decrease in the number of entries in closed arms, open arms and the number of passing to the central square. The increase in the number of entries to open arms with Eucalyptus globulus essential oil shows a reduction in anxiety behavior in rodents and this shows that these plants have an inhibitory effect.


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 313-318 ◽  
Author(s):  
Rose Vanessa Bandeira Reidel ◽  
Simona Nardoni ◽  
Francesca Mancianti ◽  
Claudia Anedda ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Abstract The objective of the present paper was the assessment of the chemical composition of the essential oils from four Asteraceae species with a considerable food, medicinal, and agricultural value, collected in Egypt, together with their in vitro inhibitory activity against molds and yeasts. The essential oil of Launaea cornuta flowers was also evaluated for the first time, but because of its very low yield (<0.01%), no antifungal test was performed.


Sign in / Sign up

Export Citation Format

Share Document