scholarly journals Coupling behavior of Bi2Sr2-xInxCaCu2O8+d

Cryogenics ◽  
2021 ◽  
pp. 103406
Author(s):  
Francesca Isabel N. de Vera ◽  
Bess G. Singidas ◽  
Roland V. Sarmago
Keyword(s):  
2021 ◽  
Vol 162 ◽  
pp. 108421
Author(s):  
Kornilios Routsonis ◽  
Patrick Blaise ◽  
Jean Tommasi

2021 ◽  
Author(s):  
Gabriel Moreno Cunha ◽  
Gilberto Corso ◽  
José Garcia Vivas Miranda ◽  
Gustavo Zampier Dos Santos Lima

Abstract In recent decades, there has been growing interest in the impact of electric fields generated in the brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable of affecting nearby neurons, a phenomenon called ephaptic neuronal communication. In the present work, the Quadratic Integrate-and-Trigger model (QIF-E) underwent an adjustment/improvement to include the ephaptic coupling behavior between neurons and their results are compared to the empirical results. In this way, the analysis tools are employed according to the neuronal activity regime: (i) for the subthreshold regime, the circular statistic is used to describe the phase differences between the input stimulus signal and the modeled membrane response; (ii) in the suprathreshold regime, the Population Vector and the Spike Field Coherence are employed to estimate phase preferences and the coupling intensity between the input stimulus and the Action Potentials. The results observed are i) in the subthreshold regime the values of the phase differences change with distinct frequencies of an input stimulus; ii) in the supra-threshold regime the preferential phase of Action Potentials changes for different frequencies. In addition, we explore other parameters of the model, such as noise and membrane characteristic-time, in order to understand different types of neurons and extracellular environment related to ephaptic communication. Such results are consistent with results observed in empirical experiments based on ephaptic coupling behavior. In addition, the QIF-E model allows further studies on the physiological importance of ephaptic coupling in the brain, and its simplicity can open a door to simulating ephaptic coupling in neuron networks and evaluating the impact of ephaptic communication in such scenarios.


2018 ◽  
Vol 31 (1) ◽  
pp. 015801 ◽  
Author(s):  
Renjie Liu ◽  
Zekun Wang ◽  
Yan’gai Liu ◽  
Tao Yang ◽  
Dexin Yang

2015 ◽  
Vol 28 (14) ◽  
pp. 5813-5829 ◽  
Author(s):  
Joseph A. Santanello ◽  
Joshua Roundy ◽  
Paul A. Dirmeyer

Abstract The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.


2017 ◽  
Vol 78 (1) ◽  
pp. 2309-2316 ◽  
Author(s):  
Keiji Yashiro ◽  
Tatsuya Kawada ◽  
Satoshi Watanabe ◽  
Mayu Muramatsu ◽  
Tadashi Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document