scholarly journals Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death

Author(s):  
Michael A Margreiter ◽  
Monika Witzenberger ◽  
Yasmine Wasser ◽  
Elena Davydova ◽  
Robert Janowski ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yahui Ding ◽  
Xiaoping Chen ◽  
Can Liu ◽  
Weizhi Ge ◽  
Qin Wang ◽  
...  

Abstract Background TNBC is the most aggressive breast cancer with higher recurrence and mortality rate than other types of breast cancer. There is an urgent need for identification of therapeutic agents with unique mode of action for overcoming current challenges in TNBC treatment. Methods Different inhibitors were used to study the cell death manner of DMOCPTL. RNA silencing was used to evaluate the functions of GPX4 in ferroptosis and apoptosis of TNBC cells and functions of EGR1 in apoptosis. Immunohistochemical assay of tissue microarray were used for investigating correlation of GPX4 and EGR1 with TNBC. Computer-aided docking and small molecule probe were used for study the binding of DMOCPTL with GPX4. Results DMOCPTL, a derivative of natural product parthenolide, exhibited about 15-fold improvement comparing to that of the parent compound PTL for TNBC cells. The cell death manner assay showed that the anti-TNBC effect of DMOCPTL mainly by inducing ferroptosis and apoptosis through ubiquitination of GPX4. The probe of DMOCPTL assay indicated that DMOCPTL induced GPX4 ubiquitination by directly binding to GPX4 protein. To the best of our knowledge, this is the first report of inducing ferroptosis through ubiquitination of GPX4. Moreover, the mechanism of GPX4 regulation of apoptosis is still obscure. Here, we firstly reveal that GPX4 regulated mitochondria-mediated apoptosis through regulation of EGR1 in TNBC cells. Compound 13, the prodrug of DMOCPTL, effectively inhibited the growth of breast tumor and prolonged the lifespan of mice in vivo, and no obvious toxicity was observed. Conclusions These findings firstly revealed novel manner to induce ferroptosis through ubiquitination of GPX4 and provided mechanism for GPX4 inducing mitochondria-mediated apoptosis through up-regulation of EGR1 in TNBC cells. Moreover, compound 13 deserves further studies as a lead compound with novel mode of action for ultimate discovery of effective anti-TNBC drug.


2010 ◽  
Vol 2 (5) ◽  
pp. 757-774 ◽  
Author(s):  
Gautam Bhave ◽  
Daniel Lonergan ◽  
Brian A Chauder ◽  
Jerod S Denton

Author(s):  
Zhennan Fang ◽  
Huiqiang Wei ◽  
Wenfeng Gou ◽  
Leyuan Chen ◽  
Changfen Bi ◽  
...  

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


2010 ◽  
Vol 104 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Anja Berwanger ◽  
Susanne Eyrisch ◽  
Inge Schuster ◽  
Volkhard Helms ◽  
Rita Bernhardt

2020 ◽  
Author(s):  
Breanna L. Zerfas ◽  
Rachel A. Coleman ◽  
Andres Salazar Chaparro ◽  
Nathaniel J. Macatangay ◽  
Darci Trader

<div> <div> <div> <p>The proteasome is an essential protein complex that, when dysregulated, can result in various diseases in eukaryotic cells. As such, understanding the enzymatic activity of the proteasome and what can alter it is crucial to elucidating its roles in these diseases. This can be done effectively by using activity-based fluorescent substrate probes, of which there are many commercially available that target the individual protease-like subunits in the 20S CP of the proteasome. Unfortunately, these probes have not displayed appropriate characteristics for their use in live cell-based assays. In the work presented here, we have developed a set of probes which have shown improved fluorescence properties and selectivity towards the proteasome compared to other cellular proteases. By including unnatural amino acids, we have found probes which can be utilized in various applications, including monitoring the effects of small molecule stimulators of the proteasome in live cells and comparing the relative proteasome activity across different cancer cell types. In future studies, we expect the fluorescent probes presented here will serve as tools to support the discovery and characterization of small molecule modulators of proteasome activity. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document