scholarly journals Entropy generation in MHD radiative viscous nanofluid flow over a porous wedge using the bivariate spectral quasi-linearization method

2018 ◽  
Vol 12 ◽  
pp. 774-788 ◽  
Author(s):  
S.P. Goqo ◽  
S.D. Oloniiju ◽  
H. Mondal ◽  
P. Sibanda ◽  
S.S. Motsa
Author(s):  
Mohammed Almakki ◽  
Sharadia Dey ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

We investigate entropy generation in unsteady three-dimensional axisymmetric MHD nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a chemical reaction. The conservation equations were solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account when the nanofluid particle volume fraction on the boundary in passively controlled. The results show that as the Hartman number increases, both the Nusselt number and the Sherwood number decrease whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with the physical parameters.


Author(s):  
S.S. Khaleduzzaman ◽  
M.R. Sohel ◽  
I.M. Mahbubul ◽  
R. Saidur ◽  
J. Selvaraj

2021 ◽  
Vol 28 ◽  
pp. 101370 ◽  
Author(s):  
Usman ◽  
Abuzar Ghaffari ◽  
Irfan Mustafa ◽  
Taseer Muhammad ◽  
Yasir Altaf

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mahbuba Tasmin ◽  
Preetom Nag ◽  
Zarin T. Hoque ◽  
Md. Mamun Molla

AbstractA numerical study on heat transfer and entropy generation in natural convection of non-Newtonian nanofluid flow has been explored within a differentially heated two-dimensional wavy porous cavity. In the present study, copper (Cu)–water nanofluid is considered for the investigation where the specific behavior of Cu nanoparticles in water is considered to behave as non-Newtonian based on previously established experimental results. The power-law model and the Brinkman-extended Darcy model has been used to characterize the non-Newtonian porous medium. The governing equations of the flow are solved using the finite volume method with the collocated grid arrangement. Numerical results are presented through streamlines, isotherms, local Nusselt number and entropy generation rate to study the effects of a range of Darcy number (Da), volume fractions (ϕ) of nanofluids, Rayleigh numbers (Ra), and the power-law index (n). Results show that the rate of heat transfer from the wavy wall to the medium becomes enhanced by decreasing the power-law index but increasing the volume fraction of nanoparticles. Increase of porosity level and buoyancy forces of the medium augments flow strength and results in a thinner boundary layer within the cavity. At negligible porosity level of the enclosure, effect of volume fraction of nanoparticles over thermal conductivity of the nanofluids is imperceptible. Interestingly, when the Darcy–Rayleigh number $$Ra^*\gg 10$$ R a ∗ ≫ 10 , the power-law effect becomes more significant than the volume fraction effect in the augmentation of the convective heat transfer process. The local entropy generation is highly dominated by heat transfer irreversibility within the porous enclosure for all conditions of the flow medium. The particular wavy shape of the cavity strongly influences the heat transfer flow pattern and local entropy generation. Interestingly, contour graphs of local entropy generation and local Bejan number show a rotationally symmetric pattern of order two about the center of the wavy cavity.


Author(s):  
T. Hayat ◽  
Inayatullah ◽  
S. Momani ◽  
K. Muhammad

Author(s):  
Nawel Benaziza ◽  
Mohamed K. Nacereddine ◽  
Mohamed Kezzar ◽  
Mohamed R. Sari ◽  
Kamel Khounfais ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document