scholarly journals Impact of hybrid nanofluid coolant on the boundary layer behavior over a moving cylinder: Numerical Case Study

Author(s):  
Essam M. Elsaid ◽  
Mohamed S. Abdel-wahed
2010 ◽  
Vol 111 (1-2) ◽  
pp. 55-64 ◽  
Author(s):  
Manoj Kumar ◽  
Anil Kumar ◽  
Chinmay Mallik ◽  
N. C. Mahanti ◽  
A. M. Shekh

Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

Author(s):  
Wasim Jamshed ◽  
Nor Ain Azeany Mohd Nasir ◽  
Muhammad Amer Qureshi ◽  
Faisal Shahzad ◽  
Ramashis Banerjee ◽  
...  

2002 ◽  
Vol 124 (3) ◽  
pp. 385-392 ◽  
Author(s):  
R. J. Howell ◽  
H. P. Hodson ◽  
V. Schulte ◽  
R. D. Stieger ◽  
Heinz-Peter Schiffer ◽  
...  

This paper describes a detailed study into the unsteady boundary layer behavior in two high-lift and one ultra-high-lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high-lift and ultra-high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high-lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two-stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high-lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra-high-lift profile represents a 12 percent reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behavior. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.


Sign in / Sign up

Export Citation Format

Share Document