Data and Energy Efficiency Indicators of Freight Transport Sector in Mexico

Author(s):  
Edgar Sandoval-García ◽  
Yasuhiro Matsumoto Kuwabara ◽  
Diana Sánchez-Partida
Author(s):  
Zhendong Liu ◽  
Mats Berg ◽  
Tohmmy Bustad

Improving energy efficiency and reducing CO2 emissions are becoming very essential worldwide. To encourage the development and application of energy-efficient and low-emission technologies and to increase people's awareness of energy-saving, many energy labelling systems are developed and utilized in most countries. Since energy labelling systems have a significant impact, more and more sectors are developing their energy labelling systems to have their products included. Globally, the transport sector consumes a great proportion of energy and is responsible for considerable CO2 emissions. Although rail vehicles have relatively high energy efficiency, a labelling system has not been developed in the railway sector, whereas other modes of transport have developed energy efficiency indicators or energy labelling systems. Therefore, it is necessary to develop an energy labelling system for rail vehicles to promote rail transport and develop the technology of rail vehicles. First, this paper gives a review of the existing energy labelling systems. Second, it summarizes the rail needs and rail stakeholders’ interests regarding energy efficiency and corresponding labelling. Last but not least, a proposal for an energy labelling system for rail vehicles is given.


Author(s):  
Urszula Motowidlak

With quantitative and qualitative data, and knowing, at a glance, goal, it was an attempt to examine the relationship between the development of road transport and the efficiency of resource use. The analysis has shown that road transport now gained a special status in people’s daily lives. The increased mobility of European citizens caused the greatest responsibility for the transport of energy. This spite of improving the efficiency of these cars and freight transport growth. The projected continued growth of freight transport will contribute to the further changes in the structure of energy consumption by road transport. Despite the high growth rate of energy efficiency improvement of truck drives, the share of demand for fuel by those vehicles will increase in total fuel demand for road transport sector. At the same time the energy consumption of cars will reduce its share in total fuel needs transport. Improvmrnt of energy efficiency of passenger and truck will not offset the increase in demand for energy in road transport. The above regularities define a key challenge facing the transport system – meeting the ever growing demand for energy.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2020 ◽  
Vol 13 (1) ◽  
pp. 304
Author(s):  
Anna Pernestål ◽  
Albin Engholm ◽  
Marie Bemler ◽  
Gyözö Gidofalvi

Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.


Energy Policy ◽  
2015 ◽  
Vol 85 ◽  
pp. 94-101 ◽  
Author(s):  
Han Hao ◽  
Yong Geng ◽  
Weiqi Li ◽  
Bin Guo

2021 ◽  
pp. 32-40
Author(s):  
Rafał M. Łukasik

The European (and global) energy sector is in a process of profound transformation, making it essential for changes to take place that influence energy producers, operators, and regulators, as well as consumers themselves, as they are the ones who interact in the energy market. The RED II Directive changes the paradigm of the use of biomass in the heat and electricity sectors, by introducing sustainability criteria with mandatory minimum greenhouse gas (GHG) emission reductions and by establishing energy efficiency criteria. For the transport sector, the extension of the introduction of renewables to all forms of transport (aviation, maritime, rail and road short and long distance), between 2021-2030, the strengthening of energy efficiency and the strong need to reduce GHG emissions, are central to achieving the national targets for renewables in transport, representing the main structural changes in the European decarbonisation policy in that sector. It is necessary to add that biomass is potentially the only source of renewable energy that makes it possible to obtain negative GHG emission values, considering the entire life cycle including CO2 capture and storage. Hence, this work aims to analyse the relevance of biomass for CHP and in particular, the use of biomass for biofuels that contribute to achieving carbon neutrality in 2050. The following thematic sub-areas are addressed in this work: i) the new environmental criteria for the use of biomass for electricity in the EU in light of now renewable energy directive; ii) current and emerging biofuel production technologies and their respective decarbonization potential; iii) the relevance or not of the development of new infrastructures for distribution renewable fuels, alternatives to the existing ones (biomethane, hydrogen, ethanol); iv) the identification of the necessary measures for biomass in the period 2020-2030


2005 ◽  
Vol 8 (4) ◽  
pp. 269-281 ◽  
Author(s):  
Michael Browne ◽  
Julian Allen ◽  
Stephen Anderson

Sign in / Sign up

Export Citation Format

Share Document