Fracture behaviour of wood bonded joints under modes I and II by digital image correlation and fibre Bragg grating sensors

2015 ◽  
Vol 27 (1) ◽  
pp. 27-35
Author(s):  
J. Xavier ◽  
J.R.A. Fernandes ◽  
J.J.L. Morais ◽  
O. Frazão
Strain ◽  
2014 ◽  
Vol 50 (3) ◽  
pp. 262-273 ◽  
Author(s):  
J. Waldbjørn ◽  
J. Høgh ◽  
J. Wittrup-Schmidt ◽  
M. W. Nielsen ◽  
K. Branner ◽  
...  

Author(s):  
Aniket B. Bhosale ◽  
S. Suriya Prakash

Abstract Improvement in fracture behaviour of fibre-reinforced concrete (FRC) due to the inclusion of various types and combinations of fibres is widely reported. The fracture behaviour of FRC needs to be fully understood for the optimum use of these fibres in structural elements. Fracture behaviours of synthetic fibre-reinforced concrete (SynFRC), hybrid fibre-reinforced concrete (HFRC) and steel fibre-reinforced concrete (SFRC) are investigated in this study using digital image correlation (DIC) technique. This work focuses on improvement in the structural performance of FRC through a comprehensive study of the change in the crack length, crack opening and fracture process zone (FPZ) due to different fibres addition and their combinations. Three distinct fibre dosages of 0.50%, 0.75%, and 1.00%, of macro-polyolefin fibres, hooked end steel fibres and their hybrid combination are regarded as research parameters. Test outcomes indicate that HFRC offers higher post-cracking resistance when compared to SynFRC. SFRC showcases superior fracture performance than that of HFRC and SynFRC. Full-field strain measurements from DIC are used to measure the crack openings at different load levels during the fracture tests. Results of DIC analysis show good agreement with experimental measurements. Continuous monitoring of strain contours using DIC reveals the effective engagement of fibres along the depth at higher dosages for HFRC when compared to that of SynFRC. Also, HFRC had longer cracks than SFRC at a particular load.


2018 ◽  
Vol 53 (7) ◽  
pp. 893-908 ◽  
Author(s):  
M Kharshiduzzaman ◽  
A Gianneo ◽  
A Bernasconi

Fiber Bragg grating optical sensors are nowadays widely employed for strain measurement for structural health monitoring and in experimental mechanics. Compared to other techniques, i.e. electrical strain gauges, fiber Bragg grating offer immunity to electromagnetic interference and allow for long transmission lead lines. Moreover, thanks to multiplexing interrogation, several sensors can be photo-imprinted into a single fiber core allowing for strain evaluation at multiple locations simultaneously. They have high adaptability to composite materials, particularly because it is possible to be embedded into laminates without affecting their strength and stiffness. Fiber Bragg grating strain measurements are based on the detection of the wavelength shift of their peak reflected spectrum. However, subjected to strain gradients, the spectral response of fiber Bragg grating sensors may be distorted and the sharp peak may not be retained. In this work, the response of fiber Bragg grating sensors having different grating lengths and bonded to the surface of a carbon fiber-reinforced twill woven laminate was analyzed. The analysis combined transfer matrix (T-matrix) with digital image correlation methods. Digital image correlation technique was used to capture the non-uniform strain fields in the woven composites and measured strains were employed in T-Matrix algorithm to simulate fiber Bragg grating response. Using this approach, the effect of the length of the fiber Bragg grating on the strain measurement is assessed and results discussed. Moreover, it is shown that T-matrix formulation combined with a non-contact strain field measurement technique, as DIC, is an appropriate technique to simulate the behavior of fiber Bragg grating bonded to composite materials of complex microstructure.


Sign in / Sign up

Export Citation Format

Share Document