scholarly journals Natural genetic variation drives microbiome selection in the Caenorhabditis elegans gut

2021 ◽  
Author(s):  
Fan Zhang ◽  
Jessica L. Weckhorst ◽  
Adrien Assié ◽  
Ciara Hosea ◽  
Christopher A. Ayoub ◽  
...  
2021 ◽  
Author(s):  
Fan Zhang ◽  
Jessica L. Weckhorst ◽  
Adrien Assié ◽  
Ciara Hosea ◽  
Christopher A. Ayoub ◽  
...  

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans strains that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the phylogenetic and functional diversity naturally found in the C. elegans microbiome. Using this community, we show that C. elegans utilizes immune, xenobiotic and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with the enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of daf-2/IGFR and requires the insulin signaling transcription factors daf-16/FOXO and pqm-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum is correlated positively with host outcomes, as animals that develop faster are larger and have higher gut Ochrobactrum colonization as adults. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of microbiome composition in C. elegans.


2020 ◽  
Author(s):  
Luke M. Noble ◽  
Asif Miah ◽  
Taniya Kaur ◽  
Matthew V. Rockman

ABSTRACTGenetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner’s choice of strain.


2018 ◽  
Author(s):  
Keir M. Balla ◽  
Vladimir Lažetić ◽  
Emily Troemel

AbstractNatural genetic variation can determine the outcome of an infection, and often reflects the co-evolutionary battle between hosts and pathogens. We previously found that a natural variant of the nematode Caenorhabditis elegans from Hawaii (HW) has increased resistance against natural microsporidian pathogens in the Nematocida genus, when compared to the standard laboratory strain of N2. In particular, HW animals can clear infection, while N2 animals cannot. In addition, HW animals have lower levels of intracellular colonization of Nematocida compared to N2. Here we investigate how this natural variation in resistance relates to autophagy. We found that there is much better targeting of autophagy-related machinery to parasites under conditions where they are cleared. In particular, ubiquitin targeting to Nematocida cells correlates very well with their subsequent clearance in terms of timing, host strain and age, as well as Nematocida species. Furthermore, clearance correlates with targeting of the LGG-2/LC3 autophagy protein to parasite cells, with HW animals having much more efficient targeting of LGG-2 to parasite cells than N2 animals. Surprisingly, however, we found that lgg-2 is not required to clear infection. Instead we found that loss of lgg-2 leads to increased intracellular colonization in the HW background, although interestingly, it does not affect colonization in the N2 background. Altogether our results suggest that there is natural genetic variation in an lgg-2-dependent process that regulates intracellular levels of microsporidia at a very early stage of infection prior to clearance.


2020 ◽  
Vol 10 (7) ◽  
pp. 2385-2395 ◽  
Author(s):  
Luke M. Noble ◽  
Asif Miah ◽  
Taniya Kaur ◽  
Matthew V. Rockman

Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner’s choice of strain.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1573-1593
Author(s):  
Muhammad Saleem ◽  
Bernard C Lamb ◽  
Eviatar Nevo

Abstract Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 87-99
Author(s):  
Bernard C Lamb ◽  
Muhammad Saleem ◽  
William Scott ◽  
Nina Thapa ◽  
Eviatar Nevo

Abstract We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.


Caryologia ◽  
2010 ◽  
Vol 63 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Santosh Kumar Sharma ◽  
Khedasana Rajkumari ◽  
Suman Kumaria ◽  
Pramod Tandon ◽  
Satyawada Rama Rao

Genetics ◽  
2015 ◽  
Vol 202 (2) ◽  
pp. 675-687 ◽  
Author(s):  
Justin J. Cassidy ◽  
Alexander J. Straughan ◽  
Richard W. Carthew

2012 ◽  
Vol 63 (15) ◽  
pp. 5689-5703 ◽  
Author(s):  
Simone Lombardi-Crestana ◽  
Mariana da Silva Azevedo ◽  
Geraldo Felipe Ferreira e Silva ◽  
Lílian Ellen Pino ◽  
Beatriz Appezzato-da-Glória ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document