scholarly journals Life versus dark energy: How an advanced civilization could resist the accelerating expansion of the universe

2018 ◽  
Vol 22 ◽  
pp. 74-79 ◽  
Author(s):  
Dan Hooper
2020 ◽  
Vol 17 (07) ◽  
pp. 2050098 ◽  
Author(s):  
Umesh Kumar Sharma ◽  
Shikha Srivastava ◽  
A. Beesham

In this paper, a new form of dark energy, known as Tsallis holographic dark energy (THDE), with IR cutoff as Hubble horizon proposed by Tavayef et al. Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195 has been explored in Bianchi-III model with the matter. By taking the time subordinate deceleration parameter, the solution of Einstein’s field equation is found. The Universe evolution from earlier decelerated to the current accelerated phase is exhibited by the deceleration parameter acquired in the THDE model. It can be seen that the derived THDE model is related to an accelerating Universe with quintessence ([Formula: see text]). The squared sound speed [Formula: see text] also suggests that the THDE model is classically stable at present. In addition, the quintessence phase of the THDE model is analyzed with swampland conjecture to reformulate the accelerating expansion of the Universe.


2013 ◽  
Vol 28 (27) ◽  
pp. 1350118 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

We study the bulk viscosity taking dust matter in the generalized teleparallel gravity. We consider different dark energy (DE) models in this scenario along with a time-dependent viscous model to construct the viscous equation of state (EoS) parameter for these DE models. We discuss the graphical representation of this parameter to investigate the viscosity effects on the accelerating expansion of the universe. It is mentioned here that the behavior of the universe depends upon the viscous coefficients showing the transition from decelerating to accelerating phase. It leads to the crossing of phantom divide line and becomes phantom dominated for specific ranges of these coefficients.


2007 ◽  
Vol 16 (12a) ◽  
pp. 1947-1952
Author(s):  
CHRISTOPHER W. STUBBS

The observation that the expansion of the Universe is proceeding at an ever-increasing rate, i.e. the "dark energy" problem, constitutes a crisis in fundamental physics that is as profound as the one that preceded the advent of quantum mechanics. Cosmological observations currently favor a dark energy equation-of-state parameter w = P/ρ = -1. Awkwardly, this is the value that has the least ability to discriminate between alternatives for the physics that produces the observed accelerating expansion. If this result persists we therefore run a very real risk of stagnation in our attempt to better understand the nature of this new physics, unless we uncover another piece of the dark energy puzzle. I argue that precision fundamental measurements in space have an important role in addressing this crisis.


2012 ◽  
Vol 07 ◽  
pp. 194-201
Author(s):  
NOBUYOSHI OHTA

We argue that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent background. We show that the QCD ghost produces dark energy proportional to the Hubble parameter [Formula: see text] (ΛQCD is the QCD mass scale) which has the right magnitude ~ (3 × 10-3 eV)4.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.


2005 ◽  
Vol 201 ◽  
pp. 255-259
Author(s):  
Peter M. Garnavich ◽  
Yun. Wang

A non-zero cosmological constant is only one of many possible explanations for the observed accelerating expansion of the Universe. Any smoothly distributed, “dark” energy with a significant negative pressure can drive the acceleration. One possible culprit is a dynamical scalar field, but there are many less popular models such as tangled cosmic strings or domain walls. Soon theorists are likely to think up a number of new energies that can accelerate the expansion, meaning that only better observations can solve this question. Dark energy can be parameterized by its equation of state, w = p/ρ, which in the most general form can vary over time. Unlike the CMB, supernova observations cover a range of redshift so they can, in principle, probe the variation in the equation of state of the unknown component. The current SN observations loosely constrain the equation of state to w < −0.6, ruling out non-intercommuting strings and textures (w = −1/3), but consistent with a cosmological constant (w = −1). The constraints achievable from future large SN surveys are limited by our ability to understand systematic effects in SN Ia luminosities. But a large sample of supernovae reaching out to z ˜ 2 should at least discriminate between a cosmological constant and a dynamical scalar field as the source of the observed acceleration.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


Sign in / Sign up

Export Citation Format

Share Document