Impact of extra-cellular polymeric substances on the filterability of activated sludge in membrane bioreactors for landfill leachate treatment

Desalination ◽  
2005 ◽  
Vol 179 (1-3) ◽  
pp. 181-190 ◽  
Author(s):  
K. Tarnacki ◽  
S. Lyko ◽  
T. Wintgens ◽  
T. Melin ◽  
F. Natau
2004 ◽  
Vol 39 (9) ◽  
pp. 2391-2404 ◽  
Author(s):  
B. Wichitsathian ◽  
S. Sindhuja ◽  
C. Visvanathan ◽  
K. H. Ahn

2015 ◽  
Vol 72 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Samunya Sanguanpak ◽  
Chart Chiemchaisri ◽  
Wilai Chiemchaisri ◽  
Kazuo Yamamoto

This research investigated the membrane fouling and micro-pollutant removals in treatment of municipal landfill leachate at various pH levels (i.e. 5.5, 6.5, 7.5, and 8.5) using membrane bioreactors. The findings revealed that membrane fouling was influenced by the pH level of mixed liquor, with pH 5.5 exhibiting the most severe membrane fouling. At pH 5.5, proteins and carbohydrates were predominant in the membrane foulants, while at pH 8.5 humic-like and inorganic substances constituted the largest proportion of the foulants on the membrane surface. The removal efficiencies of micro-pollutants (bisphenol-A; 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-4-methylbutylphenol) were nevertheless insignificantly influenced by the pH levels of mixed liquor. In addition, the removal rates of the compounds at pH 5.5 were slightly lower vis-à-vis at the higher pH levels. The micro-pollutant retention on the fouled membranes was also significant and highest under the mixed liquor pH of 8.5. Furthermore, the experiments demonstrated that the varying degrees of rejection by the fouled membranes could be attributed to the alteration of foulant characteristics as a result of the pH variations.


2017 ◽  
Vol 24 (11) ◽  
pp. 10364-10372 ◽  
Author(s):  
Gulizar Kurtoglu Akkaya ◽  
Elif Sekman ◽  
Selin Top ◽  
Ece Sagir ◽  
Mehmet Sinan Bilgili ◽  
...  

2017 ◽  
Vol 39 (18) ◽  
pp. 2365-2372 ◽  
Author(s):  
M. C. S. Amaral ◽  
G. C. B. Brito ◽  
B. G. Reis ◽  
L. C. Lange ◽  
W. G. Moravia

2003 ◽  
Vol 48 (3) ◽  
pp. 127-134 ◽  
Author(s):  
T. Wintgens ◽  
M. Gallenkemper ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. Industrial chemicals with estrogenic effects were detected in large quantities in landfill leachates. Membrane technology has proven to be an effective barrier to these substances and thus widely applied in the treatment of landfill leachate. The removal techniques under investigation are membrane bioreactors, nanofiltration, activated carbon adsorption, ozonation as well as reverse osmosis. Investigations were conducted at two different landfill leachate treatment plants with a variety of process configurations. The xenoestrogenic substances nonylphenol and bisphenol A were detected in high μg/L-ranges in raw landfill leachate. Membrane bioreactors (MBRs) were capable of removing more than 80% of the nonylphenol load. Final effluent concentrations range between 1-12 μg/L nonylphenol and 3-30 μg/L bisphenol A respectively. Reverse osmosis treatment proved to be less effective in nonylphenol and bisphenol A removal than MBRs with further polishing stages like nanofiltration and activated carbon adsorption.


Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Wang ◽  
Lusheng Li ◽  
Fengxun Tan ◽  
Daoji Wu

Landfill leachate contains a large amount of organic matter and ammoniacal nitrogen. As such, it has become a complex and difficult issue within the water treatment industry. The activated sludge process has been found to be a good solution with low processing costs and is now therefore the core process for leachate treatment, especially for nitrogen removal. This paper describes the characteristics and treatment of leachate. Treatment of leachate using the activated sludge process includes the removal of organic matter, ammoniacal nitrogen, and total nitrogen (TN). The core method for the removal of organic matter involves anaerobic treatment supplemented with an aerobic process. Ammoniacal nitrogen is commonly removed using a conventional aerobic treatment, and advanced TN removal is achieved using endogenous denitrification or an anaerobic ammonium oxidation (ANAMMOX) process. Since biological processes are the most economical method for TN removal, a key issue is how to tap the full potential of the activated sludge process and improve TN removal from leachate. This complex issue has been identified as the focus of current scholars, as well as an important future direction for leachate research and development.


2019 ◽  
Vol 5 (6) ◽  
pp. 1092-1101 ◽  
Author(s):  
Christoph Steiner ◽  
Hendrik Nolte ◽  
Asma Azizan ◽  
Markus Krüger ◽  
Martin Denecke ◽  
...  

With proteomic analysis of activated sludge for landfill leachate treatment a better understanding of the current status of the process could be achieved.


2020 ◽  
Vol 9 (32) ◽  
Author(s):  
Shohei Yasuda ◽  
Toshikazu Suenaga ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner ◽  
...  

ABSTRACT Using metagenome sequencing, a nearly complete genome sequence was retrieved for the uncultured Methyloceanibacter sp. strain A49, recovered from an activated sludge system used for landfill leachate treatment at a closed landfill site. The total size and encoded sequences are 3,407,434 bp and 3,280 genes, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shohei Yasuda ◽  
Toshikazu Suenaga ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner ◽  
...  

Upcycling wastes into valuable products by mixed microbial communities has recently received considerable attention. Sustainable production of high-value substances from one-carbon (C1) compounds, e.g., methanol supplemented as an external electron donor in bioreactors for wastewater treatment, is a promising application of upcycling. This study undertook a gene-centric approach to screen valuable production potentials from mixed culture biomass, removing organic carbon and nitrogen from landfill leachate. To this end, the microbial community of the activated sludge from a landfill leachate treatment plant and its metabolic potential for the production of seven valuable products were investigated. The DNA extracted from the activated sludge was subjected to shotgun metagenome sequencing to analyze the microbial taxonomy and functions associated with producing the seven products. The functional analysis confirmed that the activated sludge could produce six of the valuable products, ectoine, polyhydroxybutyrate (PHB), zeaxanthin, astaxanthin, acetoin, and 2,3-butanediol. Quantification of the detected functional gene hit numbers for these valuable products as a primary trial identified a potential rate-limiting metabolic pathway, e.g., conversion of L-2,4-diaminobutyrate into N-γ-acetyl-L2,4,-diaminobutyrate during the ectoine biosynthesis. Overall, this study demonstrated that primary screening by the proposed gene-centric approach can be used to evaluate the potential for the production of valuable products using mixed culture or single microbe in engineered systems. The proposed approach can be expanded to sites where water purification is highly required, but resource recovery, or upcycling has not been implemented.


Sign in / Sign up

Export Citation Format

Share Document