Quantitative proteomics for monitoring microbial dynamics in activated sludge from landfill leachate treatment

2019 ◽  
Vol 5 (6) ◽  
pp. 1092-1101 ◽  
Author(s):  
Christoph Steiner ◽  
Hendrik Nolte ◽  
Asma Azizan ◽  
Markus Krüger ◽  
Martin Denecke ◽  
...  

With proteomic analysis of activated sludge for landfill leachate treatment a better understanding of the current status of the process could be achieved.

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 384 ◽  
Author(s):  
Tabish Nawaz ◽  
Ashiqur Rahman ◽  
Shanglei Pan ◽  
Kyleigh Dixon ◽  
Burgandy Petri ◽  
...  

Solid waste generation has been projected to increase worldwide. Presently, the most applied methodology to dispose of solid waste is landfilling. However, these landfill sites, over time release a significant quantity of leachate, which can pose serious environmental issues, including contamination of water resources. There exist many physicochemical and biological landfill leachate treatment schemes with varying degrees of success. With an increasing focus on sustainability, there has been a demand for developing eco-friendly, green treatment schemes for landfill leachates with viable resource recovery and minimum environmental footprints. Microalgae-based techniques can be a potential candidate for such a treatment scenario. In this article, research on microalgae-based landfill leachate treatments reported in the last 15 years have been summarized and critically reviewed. The scale-up aspect of microalgae technology has been discussed, and the related critical factors have been elucidated. The article also analyzes the resource recovery potential for microalgal techniques with respect to leachate treatment and explores possible methodologies to minimize the environmental footprints of the microalgae-based treatment process. The future research potential in the area has been identified and discussed.


2017 ◽  
Vol 24 (11) ◽  
pp. 10364-10372 ◽  
Author(s):  
Gulizar Kurtoglu Akkaya ◽  
Elif Sekman ◽  
Selin Top ◽  
Ece Sagir ◽  
Mehmet Sinan Bilgili ◽  
...  

2016 ◽  
Author(s):  
Mohamad Anuar Kamaruddin ◽  
Mohd Suffian Yusoff ◽  
Hamidi Abdul Aziz ◽  
Rasyidah Alrozi

Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Wang ◽  
Lusheng Li ◽  
Fengxun Tan ◽  
Daoji Wu

Landfill leachate contains a large amount of organic matter and ammoniacal nitrogen. As such, it has become a complex and difficult issue within the water treatment industry. The activated sludge process has been found to be a good solution with low processing costs and is now therefore the core process for leachate treatment, especially for nitrogen removal. This paper describes the characteristics and treatment of leachate. Treatment of leachate using the activated sludge process includes the removal of organic matter, ammoniacal nitrogen, and total nitrogen (TN). The core method for the removal of organic matter involves anaerobic treatment supplemented with an aerobic process. Ammoniacal nitrogen is commonly removed using a conventional aerobic treatment, and advanced TN removal is achieved using endogenous denitrification or an anaerobic ammonium oxidation (ANAMMOX) process. Since biological processes are the most economical method for TN removal, a key issue is how to tap the full potential of the activated sludge process and improve TN removal from leachate. This complex issue has been identified as the focus of current scholars, as well as an important future direction for leachate research and development.


2020 ◽  
Vol 9 (32) ◽  
Author(s):  
Shohei Yasuda ◽  
Toshikazu Suenaga ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner ◽  
...  

ABSTRACT Using metagenome sequencing, a nearly complete genome sequence was retrieved for the uncultured Methyloceanibacter sp. strain A49, recovered from an activated sludge system used for landfill leachate treatment at a closed landfill site. The total size and encoded sequences are 3,407,434 bp and 3,280 genes, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shohei Yasuda ◽  
Toshikazu Suenaga ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner ◽  
...  

Upcycling wastes into valuable products by mixed microbial communities has recently received considerable attention. Sustainable production of high-value substances from one-carbon (C1) compounds, e.g., methanol supplemented as an external electron donor in bioreactors for wastewater treatment, is a promising application of upcycling. This study undertook a gene-centric approach to screen valuable production potentials from mixed culture biomass, removing organic carbon and nitrogen from landfill leachate. To this end, the microbial community of the activated sludge from a landfill leachate treatment plant and its metabolic potential for the production of seven valuable products were investigated. The DNA extracted from the activated sludge was subjected to shotgun metagenome sequencing to analyze the microbial taxonomy and functions associated with producing the seven products. The functional analysis confirmed that the activated sludge could produce six of the valuable products, ectoine, polyhydroxybutyrate (PHB), zeaxanthin, astaxanthin, acetoin, and 2,3-butanediol. Quantification of the detected functional gene hit numbers for these valuable products as a primary trial identified a potential rate-limiting metabolic pathway, e.g., conversion of L-2,4-diaminobutyrate into N-γ-acetyl-L2,4,-diaminobutyrate during the ectoine biosynthesis. Overall, this study demonstrated that primary screening by the proposed gene-centric approach can be used to evaluate the potential for the production of valuable products using mixed culture or single microbe in engineered systems. The proposed approach can be expanded to sites where water purification is highly required, but resource recovery, or upcycling has not been implemented.


Sign in / Sign up

Export Citation Format

Share Document