Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling

Desalination ◽  
2019 ◽  
Vol 449 ◽  
pp. 6-15 ◽  
Author(s):  
Zhongsen Yan ◽  
Ke Liu ◽  
Huarong Yu ◽  
Heng Liang ◽  
Binghan Xie ◽  
...  
2018 ◽  
Vol 34 (5) ◽  
pp. 657-693 ◽  
Author(s):  
Sareh Kheirieh ◽  
Morteza Asghari ◽  
Morteza Afsari

Abstract Polysulfone (PSf) is a favorite polymer for the production of membrane due to its excellent physicochemical properties, including thermal stability; good chemical resistance to different materials such as different bases, acids, and chlorine; sufficient mechanical strength; and good processability. The present study offers an overview of the recent development in the application and modification of PSf membranes, focusing on some applications such as water and wastewater treatment, membrane distillation, pollutant removal, gas separation, separator for lithium ion battery, and support of composite membranes. In general, there are two major difficulties in the use of membranes made of PSf: membrane fouling and membrane wetting. Therefore, PSf membrane with good anticompaction and antifouling properties is reviewed. Finally, important issues related to the modification of PSf membranes for real applications are discussed. This article provides an intelligent direction for the progress of PSf membranes in the future.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 493
Author(s):  
Amine Charfi ◽  
Fida Tibi ◽  
Jeonghwan Kim ◽  
Jin Hur ◽  
Jinwoo Cho

This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.


Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Xiang-Yang Lou ◽  
Zheng Xu ◽  
An-Ping Bai ◽  
Montserrat Resina-Gallego ◽  
Zhong-Guang Ji

Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m−2·h−1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm−1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm−1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42− common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions.


2014 ◽  
Author(s):  
◽  
Shashikanth Gajaraj

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Much attention has been drawn by bioelectrochemical systems (BES) in the past years for wastewater treatment, due to its potential for enhanced wastewater treatment and resource recovery with added advantages in terms of energy generation, environmental footprint, operating stability and economics. This dissertation focuses on the potential to improve treatment efficiency of different wastewater components when assisted by BES. Modified Ludzack-Ettinger (MLE) process and membrane bioreactor (MBR) process assisted by microbial fuel cells (MFC) showed improved the nitrate-nitrogen removal efficiencies by upto 31% and 20% respectively, and reduced sludge produced by 11% and 6% respectively over the control reactors. While the unique design of the cathode significantly reduced physical membrane fouling, all other bioreactor performance was unaffected. Microbial electrolysis cell (MEC) assisted Cr[VI] reduction was faster in 60 days as compared to 69 days with MFC assisted systems and 85 days with the control. The total Cr removal efficiencies in the control system and the MFC or MEC-assisted systems were 20%, 55%, and 65%, respectively, demonstrating the ability of BES in assisting wastewater remediation process. Finally, MECs incorporated into anaerobic digestion resulted in increased production of methane of 9.4 % or 8.5% with both glucose and activated sludge respectively as the substrate. The integration of MEC had no impact on acetoclastic methanogens involved in anaerobic digestion, but significantly increased the populations of hydrogenotrophic methanogens, especially Methanobacteriales. In conclusion, the integration of BES with conventional wastewater treatment and sludge digestion process enhanced the removal of organic matter, nitrate and toxic metals while supporting healthy microbial consortia.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Dong-Wan Cho ◽  
Gihoon Kwon ◽  
Jeongmin Han ◽  
Hocheol Song

In this study, the influence of humic acid on the treatment of coalbed methane water by direct contact membrane distillation was examined with bench-scale test unit. During short-term distillation (1000 min), high level of humic acid above 50 ppm resulted in significant decrease in permeate flux, while low level of humic acid (∼2 ppm) had little influence on the flux. For the long-term distillation (5000 min), the flux decline began at 3400 min in the presence of 5 ppm humic acid and 5 mM Ca2+, and decreased to ∼40% of initial flux at 5000 min. The spectroscopic analysis of the membrane used revealed that the surface was covered by hydrophilic layers mainly composed of calcite. The membrane fouling effect of humic acid became more significant in the presence of Ca2+ due to more facile calcite formation on the membrane surface. It was demonstrated that humic acid enhanced CaCO3 deposition on the membrane surfaces, thereby expediting the scaling phenomenon.


Sign in / Sign up

Export Citation Format

Share Document