scholarly journals Control of Cell Proliferation in the Drosophila Eye by Notch Signaling

2005 ◽  
Vol 8 (4) ◽  
pp. 529-539 ◽  
Author(s):  
Antonio Baonza ◽  
Matthew Freeman
Development ◽  
1998 ◽  
Vol 125 (11) ◽  
pp. 2031-2040 ◽  
Author(s):  
M.J. Go ◽  
D.S. Eastman ◽  
S. Artavanis-Tsakonas

The Notch receptor mediates cell interactions controlling the developmental fate of a broad spectrum of undifferentiated cells. By modulating Notch signaling in specific precursor cells during Drosophila imaginal disc development, we demonstrate that Notch activity can influence cell proliferation. The activation of the Notch receptor in the wing disc induces the expression of the wing margin patterning genes vestigial and wingless, and strong mitotic activity. However, the effect of Notch signaling on cell proliferation is not the simple consequence of the upregulation of either vestigial or wingless. Vestigial and Wingless, on the contrary, display synergistic effects with Notch signaling, resulting in the stimulation of cell proliferation in imaginal discs.


Oncogene ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 1185-1197 ◽  
Author(s):  
Mónica López-Guerra ◽  
Sílvia Xargay-Torrent ◽  
Patricia Fuentes ◽  
Jocabed Roldán ◽  
Blanca González-Farré ◽  
...  

Abstract Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), particularly in NOTCH1-mutated patients. We provide first evidence that the Notch ligand DLL4 is a potent stimulator of Notch signaling in NOTCH1-mutated CLL cells while increases cell proliferation. Importantly, DLL4 is expressed in histiocytes from the lymph node, both in NOTCH1-mutated and -unmutated cases. We also show that the DLL4-induced activation of the Notch signaling pathway can be efficiently blocked with the specific anti-Notch1 antibody OMP-52M51. Accordingly, OMP-52M51 also reverses Notch-induced MYC, CCND1, and NPM1 gene expression as well as cell proliferation in NOTCH1-mutated CLL cells. In addition, DLL4 stimulation triggers the expression of protumor target genes, such as CXCR4, NRARP, and VEGFA, together with an increase in cell migration and angiogenesis. All these events can be antagonized by OMP-52M51. Collectively, our results emphasize the role of DLL4 stimulation in NOTCH1-mutated CLL and confirm the specific therapeutic targeting of Notch1 as a promising approach for this group of poor prognosis CLL patients.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Long ◽  
Xiaobo Wang ◽  
Xianfa Du ◽  
Hehai Pan ◽  
Jianru Wang ◽  
...  

Abstract Background Intervertebral disc degeneration (IVDD)-related disorders are the major causes of low back pain. A previous study suggested that Notch activation serves as a protective mechanism and is a part of the compensatory response that maintains the necessary resident nucleus pulposus (NP) cell proliferation to replace lost or non-functional cells. However, the exact mechanism remains to be determined. In this study, we aimed to investigate the role of JAG2/Notch2 in NP cell proliferation and apoptosis. Methods Recombinant JAG2 or Notch2, Hes1, and Hey2 siRNAs were used to activate or inhibit Notch signaling. Cell proliferation, apoptosis, cell cycle regulatory factors, and pathways associated with Notch-mediated proliferation were examined. In vivo experiments involving an intradiscal injection of Sprague-Dawley rats were performed. Results Recombinant JAG2 induced Notch2 and Hes1/Hey2 expression together with NP cell proliferation. Downregulation of Notch2/Hes1/Hey2 induced G0/G1 phase cell cycle arrest in NP cells. Moreover, Notch2 mediated NP cell proliferation by regulating cyclin D1 and by activating PI3K/Akt and Wnt/β-catenin signaling. Furthermore, Notch signaling inhibited TNF-α-promoted NP cell apoptosis by suppressing the formation of the RIP1-FADD-caspase-8 complex. Finally, we found that intradiscal injection of JAG2 alleviated IVDD and that sh-Notch2 aggravated IVDD in a rat model. These results indicated that JAG2/Notch2 inhibited IVDD by modulating cell proliferation, apoptosis, and extracellular matrix. The JAG2/Notch2 axis regulated NP cell proliferation via PI3K/Akt and Wnt/β-catenin signaling and inhibited TNF-α-induced apoptosis by suppressing the formation of the RIP1-FADD-caspase-8 complex. Conclusions The current and previous results shed light on the therapeutic implications of targeting the JAG2/Notch2 axis to inhibit or reverse IVDD.


2007 ◽  
Vol 176 (5) ◽  
pp. 695-707 ◽  
Author(s):  
Hideki Niimi ◽  
Katerina Pardali ◽  
Michael Vanlandewijck ◽  
Carl-Henrik Heldin ◽  
Aristidis Moustakas

Transforming growth factor β (TGF-β) and Notch act as tumor suppressors by inhibiting epithelial cell proliferation. TGF-β additionally promotes tumor invasiveness and metastasis, whereas Notch supports oncogenic growth. We demonstrate that TGF-β and ectopic Notch1 receptor cooperatively arrest epithelial growth, whereas endogenous Notch signaling was found to be required for TGF-β to elicit cytostasis. Transcriptomic analysis after blocking endogenous Notch signaling uncovered several genes, including Notch pathway components and cell cycle and apoptosis factors, whose regulation by TGF-β requires an active Notch pathway. A prominent gene coregulated by the two pathways is the cell cycle inhibitor p21. Both transcriptional induction of the Notch ligand Jagged1 by TGF-β and endogenous levels of the Notch effector CSL contribute to p21 induction and epithelial cytostasis. Cooperative inhibition of cell proliferation by TGF-β and Notch is lost in human mammary cells in which the p21 gene has been knocked out. We establish an intimate involvement of Notch signaling in the epithelial cytostatic response to TGF-β.


Sign in / Sign up

Export Citation Format

Share Document