scholarly journals Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis

2020 ◽  
Vol 53 (6) ◽  
pp. 706-723.e5 ◽  
Author(s):  
Rokas Grigaitis ◽  
Lepakshi Ranjha ◽  
Philipp Wild ◽  
Kristina Kasaciunaite ◽  
Ilaria Ceppi ◽  
...  
Keyword(s):  
2015 ◽  
Vol 112 (50) ◽  
pp. E6852-E6861 ◽  
Author(s):  
Behzad Rad ◽  
Anthony L. Forget ◽  
Ronald J. Baskin ◽  
Stephen C. Kowalczykowski

DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.


2011 ◽  
Vol 100 (3) ◽  
pp. 23a
Author(s):  
Daniel Klaue ◽  
Daniela Kobbe ◽  
Holger Puchta ◽  
Ralf Seidel

2019 ◽  
Vol 47 (18) ◽  
pp. 9708-9720 ◽  
Author(s):  
Seoyun Choi ◽  
Seung-Won Lee ◽  
Hajin Kim ◽  
Byungchan Ahn

Abstract The RecQ family of helicases is highly conserved both structurally and functionally from bacteria to humans. Defects in human RecQ helicases are associated with genetic diseases that are characterized by cancer predisposition and/or premature aging. RecQ proteins exhibit 3′-5′ helicase activity and play critical roles in genome maintenance. Recent advances in single-molecule techniques have revealed the reiterative unwinding behavior of RecQ helicases. However, the molecular mechanisms involved in this process remain unclear, with contradicting reports. Here, we characterized the unwinding dynamics of the Caenorhabditis elegans RecQ helicase HIM-6 using single-molecule fluorescence resonance energy transfer measurements. We found that HIM-6 exhibits reiterative DNA unwinding and the length of DNA unwound by the helicase is sharply defined at 25–31 bp. Experiments using various DNA substrates revealed that HIM-6 utilizes the mode of ‘sliding back’ on the translocated strand, without strand-switching for rewinding. Furthermore, we found that Caenorhabditis elegans replication protein A, a single-stranded DNA binding protein, suppresses the reiterative behavior of HIM-6 and induces unidirectional, processive unwinding, possibly through a direct interaction between the proteins. Our findings shed new light on the mechanism of DNA unwinding by RecQ family helicases and their co-operation with RPA in processing DNA.


2017 ◽  
Vol 45 (20) ◽  
pp. 11878-11890 ◽  
Author(s):  
Maria Mills ◽  
Gábor M. Harami ◽  
Yeonee Seol ◽  
Máté Gyimesi ◽  
Máté Martina ◽  
...  

2019 ◽  
Vol 202 (3) ◽  
Author(s):  
Andrew F. Voter ◽  
Melanie M. Callaghan ◽  
Ramreddy Tippana ◽  
Sua Myong ◽  
Joseph P. Dillard ◽  
...  

ABSTRACT The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene (pilE) are replaced with segments of silent pilin genes (pilS) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c-myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution. IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ’s role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination.


2018 ◽  
Vol 114 (3) ◽  
pp. 218a
Author(s):  
Gábor M. Harami ◽  
Maria Mills ◽  
Yeonee Seol ◽  
Máté Gyimesi ◽  
Máté Martina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document