recq helicases
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 23)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jonathan M. Craig ◽  
Maria Mills ◽  
Andrew H. Laszlo ◽  
Hwanhee C. Kim ◽  
Jesse R. Huang ◽  
...  

AbstractHelicases are essential for nearly all nucleic acid processes across the tree of life. Using Nanopore Tweezers we observed the small, fast steps taken by single RecQ helicases as they step along and unwind DNA at ultrahigh spatiotemporal resolution. By directly measuring conformational substates of RecQ we determine the coupling between helicase domain motions and chemical reactions that together produce forward motion along the DNA. Application of assisting and opposing forces shows that RecQ has a highly asymmetric energy landscape that reduces its sensitivity to opposing mechanical forces that could be encountered in vivo by molecular roadblocks such as DNA bound proteins. This energy landscape enables RecQ to maintain speed against an opposing load.


2021 ◽  
Author(s):  
Tamás Annus ◽  
Dalma Müller ◽  
Bálint Jezsó ◽  
György Ullaga ◽  
Gábor M. Harami ◽  
...  

RecQ helicases - also known as the ‘guardians of the genome’ - play crucial roles in genome integrity maintenance through their involvement in various DNA metabolic pathways. Aside from being conserved from bacteria to vertebrates, their importance is also reflected in the fact that in humans impaired function of multiple RecQ helicase orthologs are known to cause severe sets of problems, including Bloom, Werner or Rothmund-Thomson syndromes. Our aim was to create and characterize a zebrafish (Danio rerio) disease model for Bloom syndrome, a recessive autosomal disorder. In humans, this syndrome is characterized by short stature, skin rashes, reduced fertility, increased risk of carcinogenesis and shortened life expectancy brought on by genomic instability. We show that zebrafish blm mutants recapitulate major hallmarks of the human disease, such as shortened lifespan and reduced fertility. Moreover, similarly to other factors involved in DNA repair, some functions of zebrafish Blm bear additional importance in germ line development, and consequently in sex differentiation. Unlike fanc genes and rad51, however, blm appears to effect its function independent of tp53. Therefore, our model will be a valuable tool for further understanding the developmental and molecular attributes of this rare disease, along with providing novel insights into the role of genome maintenance proteins in somatic DNA repair and fertility.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiangrong Chen ◽  
Yusuf I Ali ◽  
Charlotte EL Fisher ◽  
Raquel Arribas-Bosacoma ◽  
Mohan B Rajasekaran ◽  
...  

BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response; however, selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.


Author(s):  
Huiming Lu ◽  
Anthony J. Davis

RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.


2021 ◽  
Vol 161 (6-7) ◽  
pp. 305-327
Author(s):  
Adayabalam S. Balajee

Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.


2020 ◽  
Vol 477 (24) ◽  
pp. 4745-4767
Author(s):  
Shephali Bansod ◽  
Navneet Bung ◽  
Priyanka Singh ◽  
Niranjan Suthram ◽  
Himashree Choudhury ◽  
...  

Topoisomerase III (TopoIII) along with RecQ helicases are required for the resolution of abnormal DNA structures that result from the stalling of replication forks. Sequence analyses have identified a putative TopoIII in the Plasmodium falciparum genome (PfTopoIII). PfTopoIII shows dual nuclear and mitochondrial localization. The expression and association of PfTopoIII with mtDNA are tightly linked to the asexual replication of the parasite. In this study, we observed that PfTopoIII physically interacts with PfBlm and PfWrn. Sequence alignment and domain analyses have revealed that it contains a unique positively charged region, spanning 85 amino acids, within domain II. A molecular dynamics simulation study revealed that this unstructured domain communicates with DNA and attains a thermodynamically stable state upon DNA binding. Here, we found that the association between PfTopoIII and the mitochondrial genome is negatively affected by the absence of the charged domain. Our study shows that PfTOPOIII can completely rescue the slow growth phenotype of the ΔtopoIII strain in Saccharomyces cerevisiae, but neither PfY421FtopoIII (catalytic-active site mutant) nor Pf(Δ259–337)topoIII (charged region deletion mutant) can functionally complement ScTOPOIII. Hydroxyurea (HU) led to stalling of the replication fork during the S phase, caused moderate toxicity to the growth of P. falciparum, and was associated with concomitant transcriptional up-regulation of PfTOPOIII. In addition, ectopic expression of PfTOPOIII reversed HU-induced toxicity. Interestingly, the expression of Pf(Δ259–337)topoIII failed to reverse HU-mediated toxicity. Taken together, our results establish the importance of TopoIII during Plasmodium replication and emphasize the essential requirement of the charged domain in PfTopoIII function.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tulika Das ◽  
Surasree Pal ◽  
Agneyo Ganguly

Abstract RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.


2020 ◽  
Author(s):  
X. Chen ◽  
Y. Ali ◽  
C.E.L. Fisher ◽  
R. Arribas-Bosacoma ◽  
M.B. Rajasekaran ◽  
...  

ABSTRACTBLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response, however selective small molecule inhibitors of defined mechanism are currently lacking. Here we identify and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.


2020 ◽  
Vol 10 (12) ◽  
pp. 4347-4357 ◽  
Author(s):  
Cody M. Rogers ◽  
Elsbeth Sanders ◽  
Phoebe A. Nguyen ◽  
Whitney Smith-Kinnaman ◽  
Amber L. Mosley ◽  
...  

The human genome encodes five RecQ helicases (RECQL1, BLM, WRN, RECQL4, and RECQL5) that participate in various processes underpinning genomic stability. Of these enzymes, the disease-associated RECQL4 is comparatively understudied due to a variety of technical challenges. However, Saccharomyces cerevisiae encodes a functional homolog of RECQL4 called Hrq1, which is more amenable to experimentation and has recently been shown to be involved in DNA inter-strand crosslink (ICL) repair and telomere maintenance. To expand our understanding of Hrq1 and the RecQ4 subfamily of helicases in general, we took a multi-omics approach to define the Hrq1 interactome in yeast. Using synthetic genetic array analysis, we found that mutations of genes involved in processes such as DNA repair, chromosome segregation, and transcription synthetically interact with deletion of HRQ1 and the catalytically inactive hrq1-K318A allele. Pull-down of tagged Hrq1 and mass spectrometry identification of interacting partners similarly underscored links to these processes and others. Focusing on transcription, we found that hrq1 mutant cells are sensitive to caffeine and that mutation of HRQ1 alters the expression levels of hundreds of genes. In the case of hrq1-K318A, several of the most highly upregulated genes encode proteins of unknown function whose expression levels are also increased by DNA ICL damage. Together, our results suggest a heretofore unrecognized role for Hrq1 in transcription, as well as novel members of the Hrq1 ICL repair pathway. These data expand our understanding of RecQ4 subfamily helicase biology and help to explain why mutations in human RECQL4 cause diseases of genomic instability.


2020 ◽  
Vol 295 (51) ◽  
pp. 17646-17658
Author(s):  
Fang-Yuan Teng ◽  
Ting-Ting Wang ◽  
Hai-Lei Guo ◽  
Ben-Ge Xin ◽  
Bo Sun ◽  
...  

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.


Sign in / Sign up

Export Citation Format

Share Document