scholarly journals Brief dataset on chemical and mechanical properties of Corypha utan leaf fiber-reinforced composite with alkaline and silane treatment

Data in Brief ◽  
2021 ◽  
pp. 107714
Author(s):  
Kholqillah Ardhian Ilman ◽  
Agung Setyo Darmawan ◽  
Muhammad Ali Rofiq ◽  
Yan Anton Prayoga ◽  
Iman Nasucha ◽  
...  
Author(s):  
Antony Paul ◽  
Jeffery M. Gallagher ◽  
Raymond J. Cipra ◽  
Thomas Siegmund

Fiber reinforced composite materials are now frequently being used over conventional materials for their ability to achieve tailored properties and performance characteristics. With the recent advancements in manufacturing techniques, short-fiber composites are coming into prominence in this sector, with their cost advantage and their capability for large throughput. Randomness of fiber orientation is inherent to short fiber composite manufacturing processes. In order to effectively manipulate the mechanical properties of a short-fiber reinforced composite, it is imperative to adequately control the orientation of the fibers during the deposition stage. A process is currently developed to acquire geometrical data of the target object and to utilize it to create a short-fiber reinforced component with controlled fiber orientation. The topological data acquisition of the object is made possible using non-contact 3D imaging techniques. The geometric data is then transferred to a commercial CAD package for the added capability to manipulate the geometry as may be required for specific applications. Subsequently, geometric data constitutes the basis of path planning for the tooling processes. In our process, a novel rapidly re-configurable tooling and molding technology is employed by which a 6-axis robotic arm is used to sculpt a pin-device vacuum surface. After the tooling is completed, the robotic arm will use a deposition nozzle to orient a steady stream of initially random short-fiber from a feeder into a unidirectional output, onto the tool surface. By controlling the position and orientation of the deposition nozzle, it is possible to control the orientation and density of fiber in each section of the near-net shaped composite pre-form. The fiber pre-form is then impregnated with a suitable matrix medium and cured to create the required component. The outlined process is thus capable of manufacturing a near-net shaped short-fiber reinforced component with highly specific mechanical properties. One of the many applications envisaged using this process is the manufacture of custom form-fitting braces, masks and guards for use in healthcare products. A patient intervention can have his or her features acquired using stereo-imaging and have corrective measures incorporated into the device prior to manufacturing. By controlling the orientation and density of the fiber at different portions of the device, it is possible to provide adequate support at specific areas or to restrict movement in specific directions while providing compliance to movement in the others.


1998 ◽  
Vol 7 (4) ◽  
pp. 096369359800700 ◽  
Author(s):  
VK Ganesh ◽  
S Ramakrishna ◽  
HJ Leck

A method of fabricating fiber-reinforced composite based functionally gradient material is described in this paper. The material has continuously varying mechanical properties along the length. The continuous variation of the mechanical properties is achieved by continuously varying the fiber orientation using the braiding process. The test results indicate an elastic modulus increase by about 42% from the largest braid angle to the smallest braid angle for the material system and the orientation angle considered in the present study.


2018 ◽  
Vol 68 (3) ◽  
pp. 293-301
Author(s):  
Rafał Brożek ◽  
Szymon Kubanek ◽  
Beata Czarnecka ◽  
Ryszard Koczorowski ◽  
Barbara Dorocka-Bobkowska

Introduction. Ultra-high molecular weight polyethylene (UHMWPE) fibers are inert, thus their adhesion to the organic polymer matrix of the composite material may not be rewarding. Therefore, these types of fibers have not yet come into widespread use in dentistry. Aim of the study. To evaluate selected strength characteristics of the UHMWPE fiber-reinforced composite whose surface was chemically activated and then impregnated with a mixture of dimethacrylate resins and coated with a microhybrid composite material. Material and method. Tests were carried out which allowed to evaluate selected mechanical properties of the material under static stretching and shearing. Results. Based on the experiments the following values were calculated: Young’s elastic modulus Et = 3583.97 ± 1325.75 MPa, tensile stress σ = 59.73 ± 7.54 MPa, maximum tensile force Fmax = 121.23 ± 17.92 N, linear extension εt = 0.03 ± 0.003 and tangential stress τt = 4.99 ± 1.19 MPa. The loss of adhesion of the material to the hard tissues of the tooth was typical of the mixed adhesive-cohesive breakthrough. Conclusions. The study revealed high and desired mechanical strength in both the tensile test and in the shear test, which may justify the effective use of this type of fibers in clinical practice. The phenomena of saturation and penetration of the resin into the space between the fiber bundles occurring in the oxidation process did not negatively affect the mechanical properties of the material tested.


Sign in / Sign up

Export Citation Format

Share Document