Fetal bovine serum-derived exosomes regulate the adipogenic differentiation of human bone marrow mesenchymal stromal cells in a cross-species manner

2020 ◽  
Vol 115 ◽  
pp. 11-21
Author(s):  
Qiongfei Zhou ◽  
Fen Xie ◽  
Bin Zhou ◽  
Chan Li ◽  
Yijun Kang ◽  
...  
2020 ◽  
Vol 21 (21) ◽  
pp. 8044
Author(s):  
Jung Hwan Oh ◽  
Fatih Karadeniz ◽  
Youngwan Seo ◽  
Chang-Suk Kong

Natural products, especially phenols, are promising therapeutic agents with beneficial effects against aging-related complications such as osteoporosis. This study aimed to investigate the effect of quercetin 3-O-β-D-galactopyranoside (Q3G), a glycoside of a common bioactive phytochemical quercetin, on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of Q3G and the differentiation markers were analyzed to observe the effect. Q3G treatment stimulated the osteoblastogenesis markers: cell proliferation, alkaline phosphatase (ALP) activity and extracellular mineralization. In addition, it upregulated the expression of RUNX2 and osteocalcin protein as osteoblastogenesis regulating transcription factors. Moreover, Q3G treatment increased the activation of osteoblastogenesis-related Wnt and bone morphogenetic protein (BMP) signaling displayed as elevated levels of phosphorylated β-catenin and Smad1/5 in nuclear fractions of osteo-induced hBM-MSCs. The presence of quercetin in adipo-induced hBM-MSC culture inhibited the adipogenic differentiation depicted as suppressed lipid accumulation and expression of adipogenesis markers such as PPARγ, SREBP1c and C/EBPα. In conclusion, Q3G supplementation stimulated osteoblast differentiation and inhibited adipocyte differentiation in hBM-MSCs via Wnt/BMP and PPARγ pathways, respectively. This study provided useful information of the therapeutic potential of Q3G against osteoporosis mediated via regulation of MSC differentiation.


2016 ◽  
Vol 201 (5) ◽  
pp. 354-365 ◽  
Author(s):  
Zhao Huang ◽  
Benjamin Kohl ◽  
Maria Kokozidou ◽  
Stephan Arens ◽  
Gundula Schulze-Tanzil

Tissue-engineered intervertebral discs (IVDs) utilizing decellularized extracellular matrix (ECM) could be an option for the reconstruction of impaired IVDs due to degeneration or injury. The objective of this study was to prepare a cell-free decellularized human IVD scaffold and to compare neotissue formation in response to recellularization with human IVD cells (hIVDCs) or human bone marrow-derived (hBM) mesenchymal stromal cells (MSCs). IVDs were decellularized via freeze-thaw cycles, detergents and trypsin. Histological staining was performed to monitor cell removal and glycosaminoglycan (GAG) removal. The decellularized IVD was preconditioned using bovine serum albumin and fetal bovine serum before its cytocompatibility for dynamically cultured hBM-MSCs (chondrogenically induced or not) and hIVDCs was compared after 14 days. In addition, DNA, total collagen and GAG contents were assessed. The decellularization protocol achieved maximal cell removal, with only few remaining cell nuclei compared with native tissue, and low toxicity. The DNA content was significantly higher in scaffolds seeded with hIVDCs compared with native IVDs, cell-free and hBM-MSC-seeded scaffolds (p < 0.01). The GAG content in the native tissue was significantly higher compared to the others groups except for the scaffolds reseeded with chondrogenically induced hBM-MSCs (p < 0.05). In addition, there was a significantly increased total collagen content in the chondrogenically induced hBM-MSCs group (p < 0.01) compared with the native IVDs, cell-free and hIVDC-seeded scaffolds (p < 0.01); both recolonizing cell types were more evenly distributed on the scaffold surface, but only few cells penetrated the scaffold. The resulting decellularized ECM was cytocompatible and allowed hBM-MSCs/hIVDCs survival and ECM production.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2690
Author(s):  
Fatih Karadeniz ◽  
Jung Hwan Oh ◽  
Hyun Jin Jo ◽  
Youngwan Seo ◽  
Chang-Suk Kong

Natural bioactive substances are promising lead compounds with beneficial effects on various health problems including osteoporosis. In this context, the goal of this study was to investigate the effect of myricetin 3-O-β-D-galactopyranoside (M3G), a glycoside of a known bioactive phytochemical myricetin, on bone formation via osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of M3G and the differentiation markers were analyzed. Osteoblastogenesis-induced cells treated with M3G exhibited stimulated differentiation markers: cell proliferation, alkaline phosphatase (ALP) activity, and extracellular mineralization. In terms of intracellular signaling behind the stimulatory effect of M3G, the expression of RUNX2 and osteopontin transcription factors were upregulated. It has been shown that M3G treatment increased the activation of Wnt and BMP as a suggested mechanism of action for its effect. On the other hand, M3G treatment during adipogenesis-inducement of hBM-MSCs hindered the adipogenic differentiation shown as decreased lipid accumulation and expression of PPARγ, SREBP1c, and C/EBPα, adipogenic transcription factors. In conclusion, M3G treatment stimulated osteoblast differentiation and inhibited adipocyte differentiation in induced hBM-MSCs. Osteoblast formation was stimulated via Wnt/BMP and adipogenesis was inhibited via the PPARγ pathway. This study provided necessary data for further studies to utilize the therapeutic potential of M3G against osteoporosis via regulation of bone marrow stromal cell differentiation.


Stem Cells ◽  
2009 ◽  
Vol 27 (9) ◽  
pp. 2331-2341 ◽  
Author(s):  
Karen Bieback ◽  
Andrea Hecker ◽  
Asli Kocaömer ◽  
Heinrich Lannert ◽  
Katharina Schallmoser ◽  
...  

2012 ◽  
Vol 34 (7) ◽  
pp. 1367-1374 ◽  
Author(s):  
Sanjay Gottipamula ◽  
Archana Sharma ◽  
Sagar Krishnamurthy ◽  
Anish Sen Majumdar ◽  
Raviraja N. Seetharam

2021 ◽  
Vol 11 (12) ◽  
pp. 5435
Author(s):  
Jung Hwan Oh ◽  
Fatih Karadeniz ◽  
Mi-Soon Jang ◽  
Hojun Kim ◽  
Youngwan Seo ◽  
...  

Regulating the adipogenic differentiation mechanism is a valid and promising mechanism to battle obesity. Natural products, especially phytochemicals as nutraceuticals, are important lead molecules with significant activities against obesity. Loliolide is a monoterpenoid hydroxyl lactone found in many dietary plants. The effect of loliolide on adipogenic differentiation is yet to be determined. Therefore, the present study aimed to evaluate its anti-adipogenic potential using human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) and assess its mechanism of action. Adipo-induced hBM-MSCs were treated with or without loliolide and their adipogenic characteristics were examined. Loliolide treatment decreased the lipid accumulation and expression of adipogenic transcription factors, PPARγ, C/EBPα, and SREBP1c. Adipo-induced hBM-MSCs also displayed increased AMPK phosphorylation and suppressed MAPK activation following loliolide treatment according to immunoblotting results. Importantly, loliolide could stimulate Wnt10b expression and active β-catenin translocation to exert PPARγ-linked adipogenesis suppression. In conclusion, loliolide was suggested to be a potential anti-adipogenic agent which may be utilized as a lead compound for obesity treatment or prevention.


Sign in / Sign up

Export Citation Format

Share Document